--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-2 results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # distilhubert-finetuned-gtzan-2 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6290 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9857 | 1.0 | 90 | 1.8850 | 0.56 | | 1.2735 | 2.0 | 180 | 1.3243 | 0.64 | | 1.0297 | 3.0 | 270 | 1.0371 | 0.7 | | 0.6856 | 4.0 | 360 | 0.9535 | 0.74 | | 0.5659 | 5.0 | 450 | 0.7661 | 0.78 | | 0.4125 | 6.0 | 540 | 0.6502 | 0.81 | | 0.3883 | 7.0 | 630 | 0.6516 | 0.83 | | 0.2705 | 8.0 | 720 | 0.6270 | 0.81 | | 0.2147 | 9.0 | 810 | 0.6383 | 0.83 | | 0.17 | 10.0 | 900 | 0.6290 | 0.83 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1