--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: superglue_rte-bert-base-uncased results: - task: name: Text Classification type: text-classification dataset: name: super_glue type: super_glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.631768953068592 --- # superglue_rte-bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 3.9334 - Accuracy: 0.6318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6845 | 1.0 | 623 | 0.6880 | 0.5379 | | 0.6015 | 2.0 | 1246 | 0.8206 | 0.6426 | | 0.5012 | 3.0 | 1869 | 1.4769 | 0.6354 | | 0.4173 | 4.0 | 2492 | 1.7735 | 0.6570 | | 0.078 | 5.0 | 3115 | 2.2116 | 0.6354 | | 0.0732 | 6.0 | 3738 | 2.6033 | 0.6318 | | 0.0703 | 7.0 | 4361 | 2.7944 | 0.6390 | | 0.0543 | 8.0 | 4984 | 2.6007 | 0.6462 | | 0.0505 | 9.0 | 5607 | 2.4168 | 0.6462 | | 0.0412 | 10.0 | 6230 | 2.7503 | 0.6787 | | 0.0303 | 11.0 | 6853 | 3.2166 | 0.6643 | | 0.0214 | 12.0 | 7476 | 3.0135 | 0.6498 | | 0.0416 | 13.0 | 8099 | 2.9919 | 0.6534 | | 0.0252 | 14.0 | 8722 | 3.0985 | 0.6570 | | 0.0122 | 15.0 | 9345 | 3.5950 | 0.6209 | | 0.009 | 16.0 | 9968 | 3.5463 | 0.6354 | | 0.0034 | 17.0 | 10591 | 3.6333 | 0.6570 | | 0.0109 | 18.0 | 11214 | 3.6860 | 0.6426 | | 0.0041 | 19.0 | 11837 | 3.9160 | 0.6354 | | 0.0 | 20.0 | 12460 | 3.9334 | 0.6318 | ### Framework versions - Transformers 4.32.1 - Pytorch 1.13.0+cu117 - Datasets 2.15.0 - Tokenizers 0.13.3