--- license: mit base_model: gpt2 tags: - generated_from_trainer datasets: - bigbench metrics: - accuracy model-index: - name: bigbench_entailedpolarity-gpt2 results: - task: name: Text Classification type: text-classification dataset: name: bigbench type: bigbench config: entailed_polarity split: train args: entailed_polarity metrics: - name: Accuracy type: accuracy value: 0.9166666666666666 --- # bigbench_entailedpolarity-gpt2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the bigbench dataset. It achieves the following results on the evaluation set: - Loss: 1.0213 - Accuracy: 0.9167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 24 | 0.5201 | 0.875 | | No log | 2.0 | 48 | 0.3512 | 0.875 | | No log | 3.0 | 72 | 0.4245 | 0.8333 | | No log | 4.0 | 96 | 0.3220 | 0.9167 | | No log | 5.0 | 120 | 0.3962 | 0.875 | | No log | 6.0 | 144 | 0.5551 | 0.875 | | No log | 7.0 | 168 | 0.8597 | 0.875 | | No log | 8.0 | 192 | 0.4610 | 0.9583 | | No log | 9.0 | 216 | 0.9003 | 0.9167 | | No log | 10.0 | 240 | 0.8778 | 0.9167 | | No log | 11.0 | 264 | 0.9036 | 0.9167 | | No log | 12.0 | 288 | 0.9188 | 0.9167 | | No log | 13.0 | 312 | 1.0192 | 0.9167 | | No log | 14.0 | 336 | 0.9984 | 0.9167 | | No log | 15.0 | 360 | 0.9718 | 0.9167 | | No log | 16.0 | 384 | 0.9882 | 0.9167 | | No log | 17.0 | 408 | 1.0189 | 0.9167 | | No log | 18.0 | 432 | 1.0210 | 0.9167 | | No log | 19.0 | 456 | 1.0211 | 0.9167 | | No log | 20.0 | 480 | 1.0213 | 0.9167 | ### Framework versions - Transformers 4.35.2 - Pytorch 1.10.1+cu102 - Datasets 2.15.0 - Tokenizers 0.15.0