kdhole commited on
Commit
864f7b3
·
verified ·
1 Parent(s): 4304a99

Add new CrossEncoder model

Browse files
Files changed (6) hide show
  1. README.md +535 -0
  2. config.json +57 -0
  3. model.safetensors +3 -0
  4. special_tokens_map.json +37 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +945 -0
README.md ADDED
@@ -0,0 +1,535 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - cross-encoder
7
+ - reranker
8
+ - generated_from_trainer
9
+ - dataset_size:78704
10
+ - loss:ListNetLoss
11
+ base_model: jhu-clsp/ettin-encoder-1b
12
+ datasets:
13
+ - microsoft/ms_marco
14
+ pipeline_tag: text-ranking
15
+ library_name: sentence-transformers
16
+ metrics:
17
+ - map
18
+ - mrr@10
19
+ - ndcg@10
20
+ model-index:
21
+ - name: CrossEncoder based on jhu-clsp/ettin-encoder-1b
22
+ results:
23
+ - task:
24
+ type: cross-encoder-reranking
25
+ name: Cross Encoder Reranking
26
+ dataset:
27
+ name: NanoMSMARCO R100
28
+ type: NanoMSMARCO_R100
29
+ metrics:
30
+ - type: map
31
+ value: 0.5989
32
+ name: Map
33
+ - type: mrr@10
34
+ value: 0.5889
35
+ name: Mrr@10
36
+ - type: ndcg@10
37
+ value: 0.6445
38
+ name: Ndcg@10
39
+ - task:
40
+ type: cross-encoder-reranking
41
+ name: Cross Encoder Reranking
42
+ dataset:
43
+ name: NanoNFCorpus R100
44
+ type: NanoNFCorpus_R100
45
+ metrics:
46
+ - type: map
47
+ value: 0.3535
48
+ name: Map
49
+ - type: mrr@10
50
+ value: 0.5271
51
+ name: Mrr@10
52
+ - type: ndcg@10
53
+ value: 0.3808
54
+ name: Ndcg@10
55
+ - task:
56
+ type: cross-encoder-reranking
57
+ name: Cross Encoder Reranking
58
+ dataset:
59
+ name: NanoNQ R100
60
+ type: NanoNQ_R100
61
+ metrics:
62
+ - type: map
63
+ value: 0.6692
64
+ name: Map
65
+ - type: mrr@10
66
+ value: 0.6896
67
+ name: Mrr@10
68
+ - type: ndcg@10
69
+ value: 0.7157
70
+ name: Ndcg@10
71
+ - task:
72
+ type: cross-encoder-nano-beir
73
+ name: Cross Encoder Nano BEIR
74
+ dataset:
75
+ name: NanoBEIR R100 mean
76
+ type: NanoBEIR_R100_mean
77
+ metrics:
78
+ - type: map
79
+ value: 0.5405
80
+ name: Map
81
+ - type: mrr@10
82
+ value: 0.6018
83
+ name: Mrr@10
84
+ - type: ndcg@10
85
+ value: 0.5804
86
+ name: Ndcg@10
87
+ ---
88
+
89
+ # CrossEncoder based on jhu-clsp/ettin-encoder-1b
90
+
91
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [jhu-clsp/ettin-encoder-1b](https://huggingface.co/jhu-clsp/ettin-encoder-1b) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
92
+
93
+ ## Model Details
94
+
95
+ ### Model Description
96
+ - **Model Type:** Cross Encoder
97
+ - **Base model:** [jhu-clsp/ettin-encoder-1b](https://huggingface.co/jhu-clsp/ettin-encoder-1b) <!-- at revision befd76be43d08b89ff9957012f3ff29d0842780b -->
98
+ - **Maximum Sequence Length:** 7999 tokens
99
+ - **Number of Output Labels:** 1 label
100
+ - **Training Dataset:**
101
+ - [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
102
+ - **Language:** en
103
+ <!-- - **License:** Unknown -->
104
+
105
+ ### Model Sources
106
+
107
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
108
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
109
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
110
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
111
+
112
+ ## Usage
113
+
114
+ ### Direct Usage (Sentence Transformers)
115
+
116
+ First install the Sentence Transformers library:
117
+
118
+ ```bash
119
+ pip install -U sentence-transformers
120
+ ```
121
+
122
+ Then you can load this model and run inference.
123
+ ```python
124
+ from sentence_transformers import CrossEncoder
125
+
126
+ # Download from the 🤗 Hub
127
+ model = CrossEncoder("kdhole/reranker-msmarco-v1.1-ettin-encoder-1b-listnet")
128
+ # Get scores for pairs of texts
129
+ pairs = [
130
+ ['how do you measure a horse in hands', '1 A hand is equal to 4 inches or 10.2cms. 2 You should measure your horse from the point of the withers to the ground. 3 A horse that is 61 inches tall is 15.1 hands or 15 hands and 1 inch or 15.1hh. 4 This is calculated using (61/4 = 15.25); the .25 is the decimal equivalent of one quarter and a quarter of 4 = 1; so 15.1hh.'],
131
+ ['how do you measure a horse in hands', '1 If a measuring tape is being used, conversion of the measurement from inches to hands is required. 2 One hand equals 4 inches (10.2 cm), so divide the measurement by 4. 3 For example, if the horse measures 71 inches (180.3 cm), divide 71 by 4 inches. 4 The result is 17 hands with 3 inches (7.6 cm) left over.'],
132
+ ['how do you measure a horse in hands', 'Record the measurement. 1 If the horse measuring stick is being used, then the measurement can be recorded in hands immediately. 2 If a measuring tape is being used, conversion of the measurement from inches to hands is required. 3 One hand equals 4 inches (10.2 cm), so divide the measurement by 4.'],
133
+ ['how do you measure a horse in hands', 'After you have measured your horse you will need to convert the results from inches to hands.. Horse height is correctly referred to by a unit of measurement known as a hand.. One hand is equal to four inches. The gray mare in the photo above is 58 inches from the ground to the top of her withers. When 58 is divided by 4, you have 14.5.'],
134
+ ['how do you measure a horse in hands', '1 If the horse measuring stick is being used, then the measurement can be recorded in hands immediately. 2 If a measuring tape is being used, conversion of the measurement from inches to hands is required. 3 One hand equals 4 inches (10.2 cm), so divide the measurement by 4.'],
135
+ ]
136
+ scores = model.predict(pairs)
137
+ print(scores.shape)
138
+ # (5,)
139
+
140
+ # Or rank different texts based on similarity to a single text
141
+ ranks = model.rank(
142
+ 'how do you measure a horse in hands',
143
+ [
144
+ '1 A hand is equal to 4 inches or 10.2cms. 2 You should measure your horse from the point of the withers to the ground. 3 A horse that is 61 inches tall is 15.1 hands or 15 hands and 1 inch or 15.1hh. 4 This is calculated using (61/4 = 15.25); the .25 is the decimal equivalent of one quarter and a quarter of 4 = 1; so 15.1hh.',
145
+ '1 If a measuring tape is being used, conversion of the measurement from inches to hands is required. 2 One hand equals 4 inches (10.2 cm), so divide the measurement by 4. 3 For example, if the horse measures 71 inches (180.3 cm), divide 71 by 4 inches. 4 The result is 17 hands with 3 inches (7.6 cm) left over.',
146
+ 'Record the measurement. 1 If the horse measuring stick is being used, then the measurement can be recorded in hands immediately. 2 If a measuring tape is being used, conversion of the measurement from inches to hands is required. 3 One hand equals 4 inches (10.2 cm), so divide the measurement by 4.',
147
+ 'After you have measured your horse you will need to convert the results from inches to hands.. Horse height is correctly referred to by a unit of measurement known as a hand.. One hand is equal to four inches. The gray mare in the photo above is 58 inches from the ground to the top of her withers. When 58 is divided by 4, you have 14.5.',
148
+ '1 If the horse measuring stick is being used, then the measurement can be recorded in hands immediately. 2 If a measuring tape is being used, conversion of the measurement from inches to hands is required. 3 One hand equals 4 inches (10.2 cm), so divide the measurement by 4.',
149
+ ]
150
+ )
151
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
152
+ ```
153
+
154
+ <!--
155
+ ### Direct Usage (Transformers)
156
+
157
+ <details><summary>Click to see the direct usage in Transformers</summary>
158
+
159
+ </details>
160
+ -->
161
+
162
+ <!--
163
+ ### Downstream Usage (Sentence Transformers)
164
+
165
+ You can finetune this model on your own dataset.
166
+
167
+ <details><summary>Click to expand</summary>
168
+
169
+ </details>
170
+ -->
171
+
172
+ <!--
173
+ ### Out-of-Scope Use
174
+
175
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
176
+ -->
177
+
178
+ ## Evaluation
179
+
180
+ ### Metrics
181
+
182
+ #### Cross Encoder Reranking
183
+
184
+ * Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
185
+ * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
186
+ ```json
187
+ {
188
+ "at_k": 10,
189
+ "always_rerank_positives": true
190
+ }
191
+ ```
192
+
193
+ | Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
194
+ |:------------|:---------------------|:---------------------|:---------------------|
195
+ | map | 0.5989 (+0.1094) | 0.3535 (+0.0925) | 0.6692 (+0.2496) |
196
+ | mrr@10 | 0.5889 (+0.1114) | 0.5271 (+0.0272) | 0.6896 (+0.2629) |
197
+ | **ndcg@10** | **0.6445 (+0.1041)** | **0.3808 (+0.0558)** | **0.7157 (+0.2151)** |
198
+
199
+ #### Cross Encoder Nano BEIR
200
+
201
+ * Dataset: `NanoBEIR_R100_mean`
202
+ * Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
203
+ ```json
204
+ {
205
+ "dataset_names": [
206
+ "msmarco",
207
+ "nfcorpus",
208
+ "nq"
209
+ ],
210
+ "rerank_k": 100,
211
+ "at_k": 10,
212
+ "always_rerank_positives": true
213
+ }
214
+ ```
215
+
216
+ | Metric | Value |
217
+ |:------------|:---------------------|
218
+ | map | 0.5405 (+0.1505) |
219
+ | mrr@10 | 0.6018 (+0.1338) |
220
+ | **ndcg@10** | **0.5804 (+0.1250)** |
221
+
222
+ <!--
223
+ ## Bias, Risks and Limitations
224
+
225
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
226
+ -->
227
+
228
+ <!--
229
+ ### Recommendations
230
+
231
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
232
+ -->
233
+
234
+ ## Training Details
235
+
236
+ ### Training Dataset
237
+
238
+ #### ms_marco
239
+
240
+ * Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
241
+ * Size: 78,704 training samples
242
+ * Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
243
+ * Approximate statistics based on the first 1000 samples:
244
+ | | query | docs | labels |
245
+ |:--------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
246
+ | type | string | list | list |
247
+ | details | <ul><li>min: 11 characters</li><li>mean: 33.93 characters</li><li>max: 109 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |
248
+ * Samples:
249
+ | query | docs | labels |
250
+ |:-------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
251
+ | <code>Hemophilia is a group of different inherited blood-clotting disorders. Which is true about hemophilia</code> | <code>['Hemophilia is a hereditary bleeding disorder caused by a deficiency in one of two blood clotting factors: factor VIII or factor IX. Several different gene abnormalities can cause the disorder. People bleed unexpectedly or after minor injuries. ', 'Hemophilia is an inherited bleeding disorder that almost always affects males. A person with hemophilia has low or non-existent levels of blood clotting protein called factor. Coagulation factor is necessary for the clotting mechanism in our bodies to work. There are 13 blood clotting proteins (coagulation factor) along with platelets and fibrin necessary for clotting blood. Factor IX deficiency usually only manifests in males. Hemophilia C: This person has low levels of or is missing completely factor 11 (Also called FXI or factor XI deficiency) Hemophilia C is 10 times rarer than type A. Factor XI deficiency is different because it can show up in both males and females.', 'Hemophilia is a rare hereditary (inherited) bleeding disorder in w...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
252
+ | <code>what is the meaning of nazia</code> | <code>['Show similar names Show variant names. Name Nazia generally means Princess or Queen, is of Indian origin, Name Nazia is a Feminine (or Girl) name. Person with name Nazia are mainly Muslim by religion. Name Nazia belongs to rashi Vrushik (Scorpio) with dominant planet Mars (Mangal) ', "Nazia's are very outgoing once you get to meet her,she's also a undercover freak so you gotta watch her. Nazia's are unique you can tell by the name, she yurn for attention and always wants to be in a relationship. Nazia's never like to be alone they love to be around people. They are loyal so once you meet one keep them. Nazia's are good friends once you proove to them your not fake. When you meet Nazia, You'll Love her. A beautiful girl! The name means 'Pride' so she is hardworking to bring that status to her family. All Nazia's are fantastic and they don't open up easily so you will have to give them some time.", '(viewable to Premium Members only). Below is a brief analysis of the first name only. F...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
253
+ | <code>how injection moulding temperature affects polystyrene</code> | <code>['But melt temperature also has an influence on the final molecular weight of the polymer in the moulded part[3,4]. Keywords: Polymer nanocomposites, nano kaolin clay, injection moulding, moulding temperature. influence on the behaviour of the polymer are the 1. Material is fed into a heated barrel, mixed, and forced into a mould cavity where it cools and hardens to the configuration of the cavity[13]. In injection moulding, moulding conditions have a significant influence on the final properties of the material regardless of the part design.', 'It is very easy to forget that plastic melts are not thermally stable over long periods at, or above, melt temperature. Equally, it is as easy to forget that the molten mass is not impervious to the effects of shear. Plastic Melts are not Newtonian in their behaviour. That is they do not react in a linear fashion when exposed to shearing of the melt or changes in temperature. A Newtonian melt would show a straight line graph when plotted for sh...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
254
+ * Loss: [<code>ListNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters:
255
+ ```json
256
+ {
257
+ "activation_fn": "torch.nn.modules.linear.Identity",
258
+ "mini_batch_size": 16
259
+ }
260
+ ```
261
+
262
+ ### Evaluation Dataset
263
+
264
+ #### ms_marco
265
+
266
+ * Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
267
+ * Size: 1,000 evaluation samples
268
+ * Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
269
+ * Approximate statistics based on the first 1000 samples:
270
+ | | query | docs | labels |
271
+ |:--------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
272
+ | type | string | list | list |
273
+ | details | <ul><li>min: 11 characters</li><li>mean: 34.24 characters</li><li>max: 101 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |
274
+ * Samples:
275
+ | query | docs | labels |
276
+ |:-------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
277
+ | <code>how do you measure a horse in hands</code> | <code>['1 A hand is equal to 4 inches or 10.2cms. 2 You should measure your horse from the point of the withers to the ground. 3 A horse that is 61 inches tall is 15.1 hands or 15 hands and 1 inch or 15.1hh. 4 This is calculated using (61/4 = 15.25); the .25 is the decimal equivalent of one quarter and a quarter of 4 = 1; so 15.1hh.', '1 If a measuring tape is being used, conversion of the measurement from inches to hands is required. 2 One hand equals 4 inches (10.2 cm), so divide the measurement by 4. 3 For example, if the horse measures 71 inches (180.3 cm), divide 71 by 4 inches. 4 The result is 17 hands with 3 inches (7.6 cm) left over.', 'Record the measurement. 1 If the horse measuring stick is being used, then the measurement can be recorded in hands immediately. 2 If a measuring tape is being used, conversion of the measurement from inches to hands is required. 3 One hand equals 4 inches (10.2 cm), so divide the measurement by 4.', 'After you have measured your horse you wi...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
278
+ | <code>where is amsterdam located</code> | <code>["Amsterdam is located in the western Netherlands, in the province of North Holland. The river Amstel terminates in the city centre and connects to a large number of canals that eventually terminate in the IJ. Amsterdam is situated 2 metres below sea level. The surrounding land is flat as it is formed of large polders. Amsterdam's main attractions, including its historic canals, the Rijksmuseum, the Van Gogh Museum, Stedelijk Museum, Hermitage Amsterdam, Anne Frank House, Amsterdam Museum, its red-light district, and its many cannabis coffee shops draw more than 5 million international visitors annually.", 'The Netherlands is bordered by Belgium in the South, Germany in the East and the Northsea in the North and West. Amsterdam is located in the South of the province of North Holland: Amsterdam Facts. 1 Amsterdam is the largest city in the Netherlands. 2 Amsterdam is the capital of the Netherlands (while The Hague is the seat of government). 3 Amsterdam is the financial and cultural...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
279
+ | <code>what does affected mean</code> | <code>['Effected means executed, produced, or brought about. For example, The dictatorial regime quickly effected changes to the constitution that restricted the freedom of the people. On the other hand, affected means made an impact on. It is the past tense of the verb form of affect, which means to impact.', 'Meaning of Affect and Effect. In order to understand the correct situation in which to use the word affect or effect, the first thing one must do is have a clear understanding of what each word means. 1 Affect is a verb. 2 It means to produce a change in or influence something. 3 Effect is a noun that can also be used as a verb.', "affect 2 is not used as a noun; as a verb it means “to pretend” or “to assume” (new students affecting a nonchalance they didn't feel). The verb effect means “to bring about, accomplish”: Her administration effected radical changes. The noun effect means “result, consequence”: the serious effects of the oil spill.", 'Affect means to have an influence on something. Affect is normally a verb. Effect is the result of an influence or change. Effect is normally a noun. They are related in t … hat when something affects something else, it produces an effect on it. The word affect has a noun meaning related to psychology and emotion. The word effect has a verb meaning, which is to create, bring about, or institute.', 'In order to understand the correct situation in which to use the word affect or effect, the first thing one must do is have a clear understanding of what each word means. 1 Affect is a verb. 2 It means to produce a change in or influence something. 3 Effect is a noun that can also be used as a verb.']</code> | <code>[1, 0, 0, 0, 0]</code> |
280
+ * Loss: [<code>ListNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters:
281
+ ```json
282
+ {
283
+ "activation_fn": "torch.nn.modules.linear.Identity",
284
+ "mini_batch_size": 16
285
+ }
286
+ ```
287
+
288
+ ### Training Hyperparameters
289
+ #### Non-Default Hyperparameters
290
+
291
+ - `eval_strategy`: steps
292
+ - `per_device_train_batch_size`: 16
293
+ - `per_device_eval_batch_size`: 16
294
+ - `learning_rate`: 2e-05
295
+ - `num_train_epochs`: 1
296
+ - `seed`: 12
297
+ - `bf16`: True
298
+ - `load_best_model_at_end`: True
299
+
300
+ #### All Hyperparameters
301
+ <details><summary>Click to expand</summary>
302
+
303
+ - `overwrite_output_dir`: False
304
+ - `do_predict`: False
305
+ - `eval_strategy`: steps
306
+ - `prediction_loss_only`: True
307
+ - `per_device_train_batch_size`: 16
308
+ - `per_device_eval_batch_size`: 16
309
+ - `per_gpu_train_batch_size`: None
310
+ - `per_gpu_eval_batch_size`: None
311
+ - `gradient_accumulation_steps`: 1
312
+ - `eval_accumulation_steps`: None
313
+ - `torch_empty_cache_steps`: None
314
+ - `learning_rate`: 2e-05
315
+ - `weight_decay`: 0.0
316
+ - `adam_beta1`: 0.9
317
+ - `adam_beta2`: 0.999
318
+ - `adam_epsilon`: 1e-08
319
+ - `max_grad_norm`: 1.0
320
+ - `num_train_epochs`: 1
321
+ - `max_steps`: -1
322
+ - `lr_scheduler_type`: linear
323
+ - `lr_scheduler_kwargs`: {}
324
+ - `warmup_ratio`: 0.0
325
+ - `warmup_steps`: 0
326
+ - `log_level`: passive
327
+ - `log_level_replica`: warning
328
+ - `log_on_each_node`: True
329
+ - `logging_nan_inf_filter`: True
330
+ - `save_safetensors`: True
331
+ - `save_on_each_node`: False
332
+ - `save_only_model`: False
333
+ - `restore_callback_states_from_checkpoint`: False
334
+ - `no_cuda`: False
335
+ - `use_cpu`: False
336
+ - `use_mps_device`: False
337
+ - `seed`: 12
338
+ - `data_seed`: None
339
+ - `jit_mode_eval`: False
340
+ - `use_ipex`: False
341
+ - `bf16`: True
342
+ - `fp16`: False
343
+ - `fp16_opt_level`: O1
344
+ - `half_precision_backend`: auto
345
+ - `bf16_full_eval`: False
346
+ - `fp16_full_eval`: False
347
+ - `tf32`: None
348
+ - `local_rank`: 0
349
+ - `ddp_backend`: None
350
+ - `tpu_num_cores`: None
351
+ - `tpu_metrics_debug`: False
352
+ - `debug`: []
353
+ - `dataloader_drop_last`: False
354
+ - `dataloader_num_workers`: 0
355
+ - `dataloader_prefetch_factor`: None
356
+ - `past_index`: -1
357
+ - `disable_tqdm`: False
358
+ - `remove_unused_columns`: True
359
+ - `label_names`: None
360
+ - `load_best_model_at_end`: True
361
+ - `ignore_data_skip`: False
362
+ - `fsdp`: []
363
+ - `fsdp_min_num_params`: 0
364
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
365
+ - `fsdp_transformer_layer_cls_to_wrap`: None
366
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
367
+ - `parallelism_config`: None
368
+ - `deepspeed`: None
369
+ - `label_smoothing_factor`: 0.0
370
+ - `optim`: adamw_torch_fused
371
+ - `optim_args`: None
372
+ - `adafactor`: False
373
+ - `group_by_length`: False
374
+ - `length_column_name`: length
375
+ - `ddp_find_unused_parameters`: None
376
+ - `ddp_bucket_cap_mb`: None
377
+ - `ddp_broadcast_buffers`: False
378
+ - `dataloader_pin_memory`: True
379
+ - `dataloader_persistent_workers`: False
380
+ - `skip_memory_metrics`: True
381
+ - `use_legacy_prediction_loop`: False
382
+ - `push_to_hub`: False
383
+ - `resume_from_checkpoint`: None
384
+ - `hub_model_id`: None
385
+ - `hub_strategy`: every_save
386
+ - `hub_private_repo`: None
387
+ - `hub_always_push`: False
388
+ - `hub_revision`: None
389
+ - `gradient_checkpointing`: False
390
+ - `gradient_checkpointing_kwargs`: None
391
+ - `include_inputs_for_metrics`: False
392
+ - `include_for_metrics`: []
393
+ - `eval_do_concat_batches`: True
394
+ - `fp16_backend`: auto
395
+ - `push_to_hub_model_id`: None
396
+ - `push_to_hub_organization`: None
397
+ - `mp_parameters`:
398
+ - `auto_find_batch_size`: False
399
+ - `full_determinism`: False
400
+ - `torchdynamo`: None
401
+ - `ray_scope`: last
402
+ - `ddp_timeout`: 1800
403
+ - `torch_compile`: False
404
+ - `torch_compile_backend`: None
405
+ - `torch_compile_mode`: None
406
+ - `include_tokens_per_second`: False
407
+ - `include_num_input_tokens_seen`: False
408
+ - `neftune_noise_alpha`: None
409
+ - `optim_target_modules`: None
410
+ - `batch_eval_metrics`: False
411
+ - `eval_on_start`: False
412
+ - `use_liger_kernel`: False
413
+ - `liger_kernel_config`: None
414
+ - `eval_use_gather_object`: False
415
+ - `average_tokens_across_devices`: False
416
+ - `prompts`: None
417
+ - `batch_sampler`: batch_sampler
418
+ - `multi_dataset_batch_sampler`: proportional
419
+ - `router_mapping`: {}
420
+ - `learning_rate_mapping`: {}
421
+
422
+ </details>
423
+
424
+ ### Training Logs
425
+ | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
426
+ |:----------:|:--------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
427
+ | -1 | -1 | - | - | 0.0000 (-0.5404) | 0.2648 (-0.0602) | 0.0388 (-0.4618) | 0.1012 (-0.3541) |
428
+ | 0.0002 | 1 | 2.3028 | - | - | - | - | - |
429
+ | 0.0203 | 100 | 2.0955 | 2.0679 | 0.3022 (-0.2382) | 0.2808 (-0.0442) | 0.4762 (-0.0244) | 0.3531 (-0.1023) |
430
+ | 0.0407 | 200 | 2.0633 | 2.0643 | 0.5733 (+0.0329) | 0.3362 (+0.0112) | 0.6797 (+0.1790) | 0.5297 (+0.0743) |
431
+ | 0.0610 | 300 | 2.0738 | 2.0616 | 0.5738 (+0.0334) | 0.3480 (+0.0230) | 0.6018 (+0.1011) | 0.5079 (+0.0525) |
432
+ | 0.0813 | 400 | 2.0679 | 2.0617 | 0.5441 (+0.0036) | 0.3162 (-0.0088) | 0.6688 (+0.1681) | 0.5097 (+0.0543) |
433
+ | 0.1016 | 500 | 2.0702 | 2.0619 | 0.5566 (+0.0161) | 0.3423 (+0.0172) | 0.6932 (+0.1925) | 0.5307 (+0.0753) |
434
+ | 0.1220 | 600 | 2.0719 | 2.0602 | 0.5583 (+0.0179) | 0.3643 (+0.0392) | 0.7066 (+0.2060) | 0.5431 (+0.0877) |
435
+ | 0.1423 | 700 | 2.066 | 2.0600 | 0.5792 (+0.0388) | 0.3470 (+0.0219) | 0.6971 (+0.1965) | 0.5411 (+0.0857) |
436
+ | 0.1626 | 800 | 2.0704 | 2.0595 | 0.5980 (+0.0576) | 0.3493 (+0.0243) | 0.6749 (+0.1743) | 0.5407 (+0.0854) |
437
+ | 0.1830 | 900 | 2.0804 | 2.0596 | 0.6080 (+0.0675) | 0.3557 (+0.0307) | 0.6314 (+0.1307) | 0.5317 (+0.0763) |
438
+ | 0.2033 | 1000 | 2.0697 | 2.0590 | 0.5992 (+0.0587) | 0.3262 (+0.0012) | 0.7125 (+0.2119) | 0.5460 (+0.0906) |
439
+ | 0.2236 | 1100 | 2.0756 | 2.0597 | 0.6133 (+0.0729) | 0.3890 (+0.0639) | 0.6932 (+0.1926) | 0.5652 (+0.1098) |
440
+ | 0.2440 | 1200 | 2.0761 | 2.0592 | 0.5937 (+0.0533) | 0.3614 (+0.0363) | 0.6783 (+0.1776) | 0.5445 (+0.0891) |
441
+ | 0.2643 | 1300 | 2.0688 | 2.0587 | 0.5865 (+0.0461) | 0.3562 (+0.0312) | 0.6863 (+0.1856) | 0.5430 (+0.0876) |
442
+ | 0.2846 | 1400 | 2.0622 | 2.0588 | 0.6190 (+0.0786) | 0.3610 (+0.0360) | 0.6717 (+0.1710) | 0.5506 (+0.0952) |
443
+ | 0.3049 | 1500 | 2.0674 | 2.0589 | 0.6331 (+0.0926) | 0.3719 (+0.0469) | 0.7195 (+0.2189) | 0.5748 (+0.1195) |
444
+ | 0.3253 | 1600 | 2.0731 | 2.0590 | 0.6194 (+0.0790) | 0.3777 (+0.0527) | 0.6719 (+0.1713) | 0.5564 (+0.1010) |
445
+ | 0.3456 | 1700 | 2.0607 | 2.0589 | 0.5792 (+0.0388) | 0.3991 (+0.0740) | 0.6850 (+0.1843) | 0.5544 (+0.0991) |
446
+ | 0.3659 | 1800 | 2.0716 | 2.0593 | 0.6400 (+0.0996) | 0.3810 (+0.0560) | 0.7093 (+0.2087) | 0.5768 (+0.1214) |
447
+ | 0.3863 | 1900 | 2.065 | 2.0587 | 0.6490 (+0.1086) | 0.3732 (+0.0481) | 0.6862 (+0.1855) | 0.5694 (+0.1141) |
448
+ | 0.4066 | 2000 | 2.0716 | 2.0588 | 0.6336 (+0.0932) | 0.3676 (+0.0426) | 0.7023 (+0.2016) | 0.5678 (+0.1125) |
449
+ | 0.4269 | 2100 | 2.0755 | 2.0592 | 0.6227 (+0.0823) | 0.3789 (+0.0539) | 0.6523 (+0.1517) | 0.5513 (+0.0959) |
450
+ | 0.4472 | 2200 | 2.0621 | 2.0587 | 0.6296 (+0.0892) | 0.3543 (+0.0292) | 0.6721 (+0.1714) | 0.5520 (+0.0966) |
451
+ | 0.4676 | 2300 | 2.0733 | 2.0587 | 0.6452 (+0.1048) | 0.3677 (+0.0427) | 0.6939 (+0.1932) | 0.5689 (+0.1136) |
452
+ | 0.4879 | 2400 | 2.0735 | 2.0581 | 0.6360 (+0.0956) | 0.3491 (+0.0240) | 0.6830 (+0.1824) | 0.5560 (+0.1007) |
453
+ | 0.5082 | 2500 | 2.0681 | 2.0582 | 0.6328 (+0.0924) | 0.3443 (+0.0193) | 0.6792 (+0.1785) | 0.5521 (+0.0967) |
454
+ | 0.5286 | 2600 | 2.0741 | 2.0582 | 0.6618 (+0.1214) | 0.3536 (+0.0286) | 0.6812 (+0.1806) | 0.5655 (+0.1102) |
455
+ | 0.5489 | 2700 | 2.067 | 2.0587 | 0.6611 (+0.1207) | 0.3726 (+0.0476) | 0.6826 (+0.1819) | 0.5721 (+0.1167) |
456
+ | 0.5692 | 2800 | 2.0706 | 2.0579 | 0.6627 (+0.1223) | 0.3736 (+0.0486) | 0.6843 (+0.1836) | 0.5735 (+0.1182) |
457
+ | 0.5896 | 2900 | 2.0632 | 2.0580 | 0.6426 (+0.1022) | 0.3788 (+0.0538) | 0.6940 (+0.1933) | 0.5718 (+0.1164) |
458
+ | **0.6099** | **3000** | **2.0773** | **2.0582** | **0.6445 (+0.1041)** | **0.3808 (+0.0558)** | **0.7157 (+0.2151)** | **0.5804 (+0.1250)** |
459
+ | 0.6302 | 3100 | 2.071 | 2.0583 | 0.6354 (+0.0950) | 0.3810 (+0.0559) | 0.6792 (+0.1785) | 0.5652 (+0.1098) |
460
+ | 0.6505 | 3200 | 2.0678 | 2.0579 | 0.6224 (+0.0820) | 0.3753 (+0.0502) | 0.6622 (+0.1615) | 0.5533 (+0.0979) |
461
+ | 0.6709 | 3300 | 2.066 | 2.0577 | 0.6658 (+0.1254) | 0.3761 (+0.0510) | 0.6742 (+0.1735) | 0.5720 (+0.1166) |
462
+ | 0.6912 | 3400 | 2.065 | 2.0577 | 0.6525 (+0.1121) | 0.3750 (+0.0500) | 0.6760 (+0.1754) | 0.5678 (+0.1125) |
463
+ | 0.7115 | 3500 | 2.072 | 2.0580 | 0.6296 (+0.0892) | 0.3553 (+0.0303) | 0.6632 (+0.1625) | 0.5494 (+0.0940) |
464
+ | 0.7319 | 3600 | 2.065 | 2.0580 | 0.6223 (+0.0818) | 0.3638 (+0.0387) | 0.6762 (+0.1756) | 0.5541 (+0.0987) |
465
+ | 0.7522 | 3700 | 2.0633 | 2.0574 | 0.6400 (+0.0996) | 0.3718 (+0.0468) | 0.6643 (+0.1637) | 0.5587 (+0.1034) |
466
+ | 0.7725 | 3800 | 2.0655 | 2.0576 | 0.6476 (+0.1072) | 0.3882 (+0.0632) | 0.7001 (+0.1994) | 0.5786 (+0.1233) |
467
+ | 0.7928 | 3900 | 2.0703 | 2.0572 | 0.6385 (+0.0981) | 0.3848 (+0.0597) | 0.6705 (+0.1698) | 0.5646 (+0.1092) |
468
+ | 0.8132 | 4000 | 2.0741 | 2.0572 | 0.6266 (+0.0862) | 0.3614 (+0.0364) | 0.6759 (+0.1752) | 0.5546 (+0.0993) |
469
+ | 0.8335 | 4100 | 2.058 | 2.0574 | 0.6330 (+0.0925) | 0.3750 (+0.0500) | 0.6600 (+0.1593) | 0.5560 (+0.1006) |
470
+ | 0.8538 | 4200 | 2.0758 | 2.0574 | 0.6450 (+0.1046) | 0.3774 (+0.0524) | 0.6796 (+0.1789) | 0.5673 (+0.1120) |
471
+ | 0.8742 | 4300 | 2.0648 | 2.0572 | 0.6261 (+0.0857) | 0.3681 (+0.0430) | 0.6796 (+0.1789) | 0.5579 (+0.1025) |
472
+ | 0.8945 | 4400 | 2.0647 | 2.0573 | 0.6377 (+0.0973) | 0.3724 (+0.0473) | 0.6523 (+0.1517) | 0.5541 (+0.0988) |
473
+ | 0.9148 | 4500 | 2.0634 | 2.0570 | 0.6412 (+0.1008) | 0.3738 (+0.0488) | 0.6917 (+0.1911) | 0.5689 (+0.1136) |
474
+ | 0.9351 | 4600 | 2.0675 | 2.0570 | 0.6426 (+0.1022) | 0.3819 (+0.0569) | 0.6875 (+0.1869) | 0.5707 (+0.1153) |
475
+ | 0.9555 | 4700 | 2.061 | 2.0570 | 0.6428 (+0.1024) | 0.3884 (+0.0634) | 0.6929 (+0.1923) | 0.5747 (+0.1194) |
476
+ | 0.9758 | 4800 | 2.0652 | 2.0571 | 0.6462 (+0.1058) | 0.3892 (+0.0641) | 0.6933 (+0.1927) | 0.5763 (+0.1209) |
477
+ | 0.9961 | 4900 | 2.0636 | 2.0571 | 0.6489 (+0.1084) | 0.3896 (+0.0645) | 0.6889 (+0.1883) | 0.5758 (+0.1204) |
478
+ | -1 | -1 | - | - | 0.6445 (+0.1041) | 0.3808 (+0.0558) | 0.7157 (+0.2151) | 0.5804 (+0.1250) |
479
+
480
+ * The bold row denotes the saved checkpoint.
481
+
482
+ ### Framework Versions
483
+ - Python: 3.9.18
484
+ - Sentence Transformers: 5.1.1
485
+ - Transformers: 4.56.2
486
+ - PyTorch: 2.8.0+cu128
487
+ - Accelerate: 1.10.1
488
+ - Datasets: 4.1.1
489
+ - Tokenizers: 0.22.1
490
+
491
+ ## Citation
492
+
493
+ ### BibTeX
494
+
495
+ #### Sentence Transformers
496
+ ```bibtex
497
+ @inproceedings{reimers-2019-sentence-bert,
498
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
499
+ author = "Reimers, Nils and Gurevych, Iryna",
500
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
501
+ month = "11",
502
+ year = "2019",
503
+ publisher = "Association for Computational Linguistics",
504
+ url = "https://arxiv.org/abs/1908.10084",
505
+ }
506
+ ```
507
+
508
+ #### ListNetLoss
509
+ ```bibtex
510
+ @inproceedings{cao2007learning,
511
+ title={Learning to Rank: From Pairwise Approach to Listwise Approach},
512
+ author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
513
+ booktitle={Proceedings of the 24th international conference on Machine learning},
514
+ pages={129--136},
515
+ year={2007}
516
+ }
517
+ ```
518
+
519
+ <!--
520
+ ## Glossary
521
+
522
+ *Clearly define terms in order to be accessible across audiences.*
523
+ -->
524
+
525
+ <!--
526
+ ## Model Card Authors
527
+
528
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
529
+ -->
530
+
531
+ <!--
532
+ ## Model Card Contact
533
+
534
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
535
+ -->
config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertForSequenceClassification"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": null,
8
+ "causal_mask": false,
9
+ "classifier_activation": "gelu",
10
+ "classifier_bias": false,
11
+ "classifier_dropout": 0.0,
12
+ "classifier_pooling": "mean",
13
+ "cls_token_id": 50281,
14
+ "decoder_bias": true,
15
+ "deterministic_flash_attn": false,
16
+ "dtype": "float32",
17
+ "embedding_dropout": 0.0,
18
+ "eos_token_id": null,
19
+ "global_attn_every_n_layers": 3,
20
+ "global_rope_theta": 160000.0,
21
+ "gradient_checkpointing": false,
22
+ "hidden_activation": "gelu",
23
+ "hidden_size": 1792,
24
+ "id2label": {
25
+ "0": "LABEL_0"
26
+ },
27
+ "initializer_cutoff_factor": 2.0,
28
+ "initializer_range": 0.02,
29
+ "intermediate_size": 3840,
30
+ "is_causal": false,
31
+ "label2id": {
32
+ "LABEL_0": 0
33
+ },
34
+ "layer_norm_eps": 1e-05,
35
+ "local_attention": 128,
36
+ "local_rope_theta": 160000.0,
37
+ "max_position_embeddings": 7999,
38
+ "mlp_bias": false,
39
+ "mlp_dropout": 0.0,
40
+ "model_type": "modernbert",
41
+ "norm_bias": false,
42
+ "norm_eps": 1e-05,
43
+ "num_attention_heads": 28,
44
+ "num_hidden_layers": 28,
45
+ "pad_token_id": 50283,
46
+ "position_embedding_type": "sans_pos",
47
+ "repad_logits_with_grad": false,
48
+ "sentence_transformers": {
49
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
50
+ "version": "5.1.1"
51
+ },
52
+ "sep_token_id": 50282,
53
+ "sparse_pred_ignore_index": -100,
54
+ "sparse_prediction": false,
55
+ "transformers_version": "4.56.2",
56
+ "vocab_size": 50368
57
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:632739333930379a4cc2a70b60354cc10a17ba88434b80221715d94019188add
3
+ size 4125080540
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 7999,
941
+ "pad_token": "[PAD]",
942
+ "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizerFast",
944
+ "unk_token": "[UNK]"
945
+ }