File size: 43,742 Bytes
5f19913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
# training with captions

import argparse
import math
import os
from multiprocessing import Value
from typing import List
import toml

from tqdm import tqdm

import torch
from library.device_utils import init_ipex, clean_memory_on_device


init_ipex()

from accelerate.utils import set_seed
from diffusers import DDPMScheduler
from library import deepspeed_utils, sdxl_model_util

import library.train_util as train_util

from library.utils import setup_logging, add_logging_arguments

setup_logging()
import logging

logger = logging.getLogger(__name__)

import library.config_util as config_util
import library.sdxl_train_util as sdxl_train_util
from library.config_util import (
    ConfigSanitizer,
    BlueprintGenerator,
)
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import (
    apply_snr_weight,
    prepare_scheduler_for_custom_training,
    scale_v_prediction_loss_like_noise_prediction,
    add_v_prediction_like_loss,
    apply_debiased_estimation,
    apply_masked_loss,
)
from library.sdxl_original_unet import SdxlUNet2DConditionModel


UNET_NUM_BLOCKS_FOR_BLOCK_LR = 23


def get_block_params_to_optimize(unet: SdxlUNet2DConditionModel, block_lrs: List[float]) -> List[dict]:
    block_params = [[] for _ in range(len(block_lrs))]

    for i, (name, param) in enumerate(unet.named_parameters()):
        if name.startswith("time_embed.") or name.startswith("label_emb."):
            block_index = 0  # 0
        elif name.startswith("input_blocks."):  # 1-9
            block_index = 1 + int(name.split(".")[1])
        elif name.startswith("middle_block."):  # 10-12
            block_index = 10 + int(name.split(".")[1])
        elif name.startswith("output_blocks."):  # 13-21
            block_index = 13 + int(name.split(".")[1])
        elif name.startswith("out."):  # 22
            block_index = 22
        else:
            raise ValueError(f"unexpected parameter name: {name}")

        block_params[block_index].append(param)

    params_to_optimize = []
    for i, params in enumerate(block_params):
        if block_lrs[i] == 0:  # 0のときは学習しない do not optimize when lr is 0
            continue
        params_to_optimize.append({"params": params, "lr": block_lrs[i]})

    return params_to_optimize


def append_block_lr_to_logs(block_lrs, logs, lr_scheduler, optimizer_type):
    names = []
    block_index = 0
    while block_index < UNET_NUM_BLOCKS_FOR_BLOCK_LR + 2:
        if block_index < UNET_NUM_BLOCKS_FOR_BLOCK_LR:
            if block_lrs[block_index] == 0:
                block_index += 1
                continue
            names.append(f"block{block_index}")
        elif block_index == UNET_NUM_BLOCKS_FOR_BLOCK_LR:
            names.append("text_encoder1")
        elif block_index == UNET_NUM_BLOCKS_FOR_BLOCK_LR + 1:
            names.append("text_encoder2")

        block_index += 1

    train_util.append_lr_to_logs_with_names(logs, lr_scheduler, optimizer_type, names)


def train(args):
    train_util.verify_training_args(args)
    train_util.prepare_dataset_args(args, True)
    sdxl_train_util.verify_sdxl_training_args(args)
    deepspeed_utils.prepare_deepspeed_args(args)
    setup_logging(args, reset=True)

    assert (
        not args.weighted_captions
    ), "weighted_captions is not supported currently / weighted_captionsは現在サポートされていません"
    assert (
        not args.train_text_encoder or not args.cache_text_encoder_outputs
    ), "cache_text_encoder_outputs is not supported when training text encoder / text encoderを学習するときはcache_text_encoder_outputsはサポートされていません"

    if args.block_lr:
        block_lrs = [float(lr) for lr in args.block_lr.split(",")]
        assert (
            len(block_lrs) == UNET_NUM_BLOCKS_FOR_BLOCK_LR
        ), f"block_lr must have {UNET_NUM_BLOCKS_FOR_BLOCK_LR} values / block_lrは{UNET_NUM_BLOCKS_FOR_BLOCK_LR}個の値を指定してください"
    else:
        block_lrs = None

    cache_latents = args.cache_latents
    use_dreambooth_method = args.in_json is None

    if args.seed is not None:
        set_seed(args.seed)  # 乱数系列を初期化する

    tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args)

    # データセットを準備する
    if args.dataset_class is None:
        blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, True))
        if args.dataset_config is not None:
            logger.info(f"Load dataset config from {args.dataset_config}")
            user_config = config_util.load_user_config(args.dataset_config)
            ignored = ["train_data_dir", "in_json"]
            if any(getattr(args, attr) is not None for attr in ignored):
                logger.warning(
                    "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
                        ", ".join(ignored)
                    )
                )
        else:
            if use_dreambooth_method:
                logger.info("Using DreamBooth method.")
                user_config = {
                    "datasets": [
                        {
                            "subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
                                args.train_data_dir, args.reg_data_dir
                            )
                        }
                    ]
                }
            else:
                logger.info("Training with captions.")
                user_config = {
                    "datasets": [
                        {
                            "subsets": [
                                {
                                    "image_dir": args.train_data_dir,
                                    "metadata_file": args.in_json,
                                }
                            ]
                        }
                    ]
                }

        blueprint = blueprint_generator.generate(user_config, args, tokenizer=[tokenizer1, tokenizer2])
        train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
    else:
        train_dataset_group = train_util.load_arbitrary_dataset(args, [tokenizer1, tokenizer2])

    current_epoch = Value("i", 0)
    current_step = Value("i", 0)
    ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
    collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)

    train_dataset_group.verify_bucket_reso_steps(32)

    if args.debug_dataset:
        train_util.debug_dataset(train_dataset_group, True)
        return
    if len(train_dataset_group) == 0:
        logger.error(
            "No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。"
        )
        return

    if cache_latents:
        assert (
            train_dataset_group.is_latent_cacheable()
        ), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"

    if args.cache_text_encoder_outputs:
        assert (
            train_dataset_group.is_text_encoder_output_cacheable()
        ), "when caching text encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / text encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"

    # acceleratorを準備する
    logger.info("prepare accelerator")
    accelerator = train_util.prepare_accelerator(args)

    # mixed precisionに対応した型を用意しておき適宜castする
    weight_dtype, save_dtype = train_util.prepare_dtype(args)
    vae_dtype = torch.float32 if args.no_half_vae else weight_dtype

    # モデルを読み込む
    (
        load_stable_diffusion_format,
        text_encoder1,
        text_encoder2,
        vae,
        unet,
        logit_scale,
        ckpt_info,
    ) = sdxl_train_util.load_target_model(args, accelerator, "sdxl", weight_dtype)
    # logit_scale = logit_scale.to(accelerator.device, dtype=weight_dtype)

    # verify load/save model formats
    if load_stable_diffusion_format:
        src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
        src_diffusers_model_path = None
    else:
        src_stable_diffusion_ckpt = None
        src_diffusers_model_path = args.pretrained_model_name_or_path

    if args.save_model_as is None:
        save_stable_diffusion_format = load_stable_diffusion_format
        use_safetensors = args.use_safetensors
    else:
        save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
        use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
        # assert save_stable_diffusion_format, "save_model_as must be ckpt or safetensors / save_model_asはckptかsafetensorsである必要があります"

    # Diffusers版のxformers使用フラグを設定する関数
    def set_diffusers_xformers_flag(model, valid):
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
                module.set_use_memory_efficient_attention_xformers(valid)

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        fn_recursive_set_mem_eff(model)

    # モデルに xformers とか memory efficient attention を組み込む
    if args.diffusers_xformers:
        # もうU-Netを独自にしたので動かないけどVAEのxformersは動くはず
        accelerator.print("Use xformers by Diffusers")
        # set_diffusers_xformers_flag(unet, True)
        set_diffusers_xformers_flag(vae, True)
    else:
        # Windows版のxformersはfloatで学習できなかったりするのでxformersを使わない設定も可能にしておく必要がある
        accelerator.print("Disable Diffusers' xformers")
        train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
        if torch.__version__ >= "2.0.0":  # PyTorch 2.0.0 以上対応のxformersなら以下が使える
            vae.set_use_memory_efficient_attention_xformers(args.xformers)

    # 学習を準備する
    if cache_latents:
        vae.to(accelerator.device, dtype=vae_dtype)
        vae.requires_grad_(False)
        vae.eval()
        with torch.no_grad():
            train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
        vae.to("cpu")
        clean_memory_on_device(accelerator.device)

        accelerator.wait_for_everyone()

    # 学習を準備する:モデルを適切な状態にする
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
    train_unet = args.learning_rate != 0
    train_text_encoder1 = False
    train_text_encoder2 = False

    if args.train_text_encoder:
        # TODO each option for two text encoders?
        accelerator.print("enable text encoder training")
        if args.gradient_checkpointing:
            text_encoder1.gradient_checkpointing_enable()
            text_encoder2.gradient_checkpointing_enable()
        lr_te1 = args.learning_rate_te1 if args.learning_rate_te1 is not None else args.learning_rate  # 0 means not train
        lr_te2 = args.learning_rate_te2 if args.learning_rate_te2 is not None else args.learning_rate  # 0 means not train
        train_text_encoder1 = lr_te1 != 0
        train_text_encoder2 = lr_te2 != 0

        # caching one text encoder output is not supported
        if not train_text_encoder1:
            text_encoder1.to(weight_dtype)
        if not train_text_encoder2:
            text_encoder2.to(weight_dtype)
        text_encoder1.requires_grad_(train_text_encoder1)
        text_encoder2.requires_grad_(train_text_encoder2)
        text_encoder1.train(train_text_encoder1)
        text_encoder2.train(train_text_encoder2)
    else:
        text_encoder1.to(weight_dtype)
        text_encoder2.to(weight_dtype)
        text_encoder1.requires_grad_(False)
        text_encoder2.requires_grad_(False)
        text_encoder1.eval()
        text_encoder2.eval()

        # TextEncoderの出力をキャッシュする
        if args.cache_text_encoder_outputs:
            # Text Encodes are eval and no grad
            with torch.no_grad(), accelerator.autocast():
                train_dataset_group.cache_text_encoder_outputs(
                    (tokenizer1, tokenizer2),
                    (text_encoder1, text_encoder2),
                    accelerator.device,
                    None,
                    args.cache_text_encoder_outputs_to_disk,
                    accelerator.is_main_process,
                )
            accelerator.wait_for_everyone()

    if not cache_latents:
        vae.requires_grad_(False)
        vae.eval()
        vae.to(accelerator.device, dtype=vae_dtype)

    unet.requires_grad_(train_unet)
    if not train_unet:
        unet.to(accelerator.device, dtype=weight_dtype)  # because of unet is not prepared

    training_models = []
    params_to_optimize = []
    if train_unet:
        training_models.append(unet)
        if block_lrs is None:
            params_to_optimize.append({"params": list(unet.parameters()), "lr": args.learning_rate})
        else:
            params_to_optimize.extend(get_block_params_to_optimize(unet, block_lrs))

    if train_text_encoder1:
        training_models.append(text_encoder1)
        params_to_optimize.append({"params": list(text_encoder1.parameters()), "lr": args.learning_rate_te1 or args.learning_rate})
    if train_text_encoder2:
        training_models.append(text_encoder2)
        params_to_optimize.append({"params": list(text_encoder2.parameters()), "lr": args.learning_rate_te2 or args.learning_rate})

    # calculate number of trainable parameters
    n_params = 0
    for group in params_to_optimize:
        for p in group["params"]:
            n_params += p.numel()

    accelerator.print(f"train unet: {train_unet}, text_encoder1: {train_text_encoder1}, text_encoder2: {train_text_encoder2}")
    accelerator.print(f"number of models: {len(training_models)}")
    accelerator.print(f"number of trainable parameters: {n_params}")

    # 学習に必要なクラスを準備する
    accelerator.print("prepare optimizer, data loader etc.")

    if args.fused_optimizer_groups:
        # fused backward pass: https://pytorch.org/tutorials/intermediate/optimizer_step_in_backward_tutorial.html
        # Instead of creating an optimizer for all parameters as in the tutorial, we create an optimizer for each group of parameters.
        # This balances memory usage and management complexity.

        # calculate total number of parameters
        n_total_params = sum(len(params["params"]) for params in params_to_optimize)
        params_per_group = math.ceil(n_total_params / args.fused_optimizer_groups)

        # split params into groups, keeping the learning rate the same for all params in a group
        # this will increase the number of groups if the learning rate is different for different params (e.g. U-Net and text encoders)
        grouped_params = []
        param_group = []
        param_group_lr = -1
        for group in params_to_optimize:
            lr = group["lr"]
            for p in group["params"]:
                # if the learning rate is different for different params, start a new group
                if lr != param_group_lr:
                    if param_group:
                        grouped_params.append({"params": param_group, "lr": param_group_lr})
                        param_group = []
                    param_group_lr = lr

                param_group.append(p)

                # if the group has enough parameters, start a new group
                if len(param_group) == params_per_group:
                    grouped_params.append({"params": param_group, "lr": param_group_lr})
                    param_group = []
                    param_group_lr = -1

        if param_group:
            grouped_params.append({"params": param_group, "lr": param_group_lr})

        # prepare optimizers for each group
        optimizers = []
        for group in grouped_params:
            _, _, optimizer = train_util.get_optimizer(args, trainable_params=[group])
            optimizers.append(optimizer)
        optimizer = optimizers[0]  # avoid error in the following code

        logger.info(f"using {len(optimizers)} optimizers for fused optimizer groups")

    else:
        _, _, optimizer = train_util.get_optimizer(args, trainable_params=params_to_optimize)

    # dataloaderを準備する
    # DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
    n_workers = min(args.max_data_loader_n_workers, os.cpu_count())  # cpu_count or max_data_loader_n_workers
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset_group,
        batch_size=1,
        shuffle=True,
        collate_fn=collator,
        num_workers=n_workers,
        persistent_workers=args.persistent_data_loader_workers,
    )

    # 学習ステップ数を計算する
    if args.max_train_epochs is not None:
        args.max_train_steps = args.max_train_epochs * math.ceil(
            len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
        )
        accelerator.print(
            f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
        )

    # データセット側にも学習ステップを送信
    train_dataset_group.set_max_train_steps(args.max_train_steps)

    # lr schedulerを用意する
    if args.fused_optimizer_groups:
        # prepare lr schedulers for each optimizer
        lr_schedulers = [train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) for optimizer in optimizers]
        lr_scheduler = lr_schedulers[0]  # avoid error in the following code
    else:
        lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)

    # 実験的機能:勾配も含めたfp16/bf16学習を行う モデル全体をfp16/bf16にする
    if args.full_fp16:
        assert (
            args.mixed_precision == "fp16"
        ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
        accelerator.print("enable full fp16 training.")
        unet.to(weight_dtype)
        text_encoder1.to(weight_dtype)
        text_encoder2.to(weight_dtype)
    elif args.full_bf16:
        assert (
            args.mixed_precision == "bf16"
        ), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
        accelerator.print("enable full bf16 training.")
        unet.to(weight_dtype)
        text_encoder1.to(weight_dtype)
        text_encoder2.to(weight_dtype)

    # freeze last layer and final_layer_norm in te1 since we use the output of the penultimate layer
    if train_text_encoder1:
        text_encoder1.text_model.encoder.layers[-1].requires_grad_(False)
        text_encoder1.text_model.final_layer_norm.requires_grad_(False)

    if args.deepspeed:
        ds_model = deepspeed_utils.prepare_deepspeed_model(
            args,
            unet=unet if train_unet else None,
            text_encoder1=text_encoder1 if train_text_encoder1 else None,
            text_encoder2=text_encoder2 if train_text_encoder2 else None,
        )
        # most of ZeRO stage uses optimizer partitioning, so we have to prepare optimizer and ds_model at the same time. # pull/1139#issuecomment-1986790007
        ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            ds_model, optimizer, train_dataloader, lr_scheduler
        )
        training_models = [ds_model]

    else:
        # acceleratorがなんかよろしくやってくれるらしい
        if train_unet:
            unet = accelerator.prepare(unet)
        if train_text_encoder1:
            text_encoder1 = accelerator.prepare(text_encoder1)
        if train_text_encoder2:
            text_encoder2 = accelerator.prepare(text_encoder2)
        optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler)

    # TextEncoderの出力をキャッシュするときにはCPUへ移動する
    if args.cache_text_encoder_outputs:
        # move Text Encoders for sampling images. Text Encoder doesn't work on CPU with fp16
        text_encoder1.to("cpu", dtype=torch.float32)
        text_encoder2.to("cpu", dtype=torch.float32)
        clean_memory_on_device(accelerator.device)
    else:
        # make sure Text Encoders are on GPU
        text_encoder1.to(accelerator.device)
        text_encoder2.to(accelerator.device)

    # 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
    if args.full_fp16:
        # During deepseed training, accelerate not handles fp16/bf16|mixed precision directly via scaler. Let deepspeed engine do.
        # -> But we think it's ok to patch accelerator even if deepspeed is enabled.
        train_util.patch_accelerator_for_fp16_training(accelerator)

    # resumeする
    train_util.resume_from_local_or_hf_if_specified(accelerator, args)

    if args.fused_backward_pass:
        # use fused optimizer for backward pass: other optimizers will be supported in the future
        import library.adafactor_fused

        library.adafactor_fused.patch_adafactor_fused(optimizer)
        for param_group in optimizer.param_groups:
            for parameter in param_group["params"]:
                if parameter.requires_grad:

                    def __grad_hook(tensor: torch.Tensor, param_group=param_group):
                        if accelerator.sync_gradients and args.max_grad_norm != 0.0:
                            accelerator.clip_grad_norm_(tensor, args.max_grad_norm)
                        optimizer.step_param(tensor, param_group)
                        tensor.grad = None

                    parameter.register_post_accumulate_grad_hook(__grad_hook)

    elif args.fused_optimizer_groups:
        # prepare for additional optimizers and lr schedulers
        for i in range(1, len(optimizers)):
            optimizers[i] = accelerator.prepare(optimizers[i])
            lr_schedulers[i] = accelerator.prepare(lr_schedulers[i])

        # counters are used to determine when to step the optimizer
        global optimizer_hooked_count
        global num_parameters_per_group
        global parameter_optimizer_map

        optimizer_hooked_count = {}
        num_parameters_per_group = [0] * len(optimizers)
        parameter_optimizer_map = {}

        for opt_idx, optimizer in enumerate(optimizers):
            for param_group in optimizer.param_groups:
                for parameter in param_group["params"]:
                    if parameter.requires_grad:

                        def optimizer_hook(parameter: torch.Tensor):
                            if accelerator.sync_gradients and args.max_grad_norm != 0.0:
                                accelerator.clip_grad_norm_(parameter, args.max_grad_norm)

                            i = parameter_optimizer_map[parameter]
                            optimizer_hooked_count[i] += 1
                            if optimizer_hooked_count[i] == num_parameters_per_group[i]:
                                optimizers[i].step()
                                optimizers[i].zero_grad(set_to_none=True)

                        parameter.register_post_accumulate_grad_hook(optimizer_hook)
                        parameter_optimizer_map[parameter] = opt_idx
                        num_parameters_per_group[opt_idx] += 1

    # epoch数を計算する
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
    if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
        args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1

    # 学習する
    # total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
    accelerator.print("running training / 学習開始")
    accelerator.print(f"  num examples / サンプル数: {train_dataset_group.num_train_images}")
    accelerator.print(f"  num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
    accelerator.print(f"  num epochs / epoch数: {num_train_epochs}")
    accelerator.print(
        f"  batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
    )
    # accelerator.print(
    #     f"  total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}"
    # )
    accelerator.print(f"  gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
    accelerator.print(f"  total optimization steps / 学習ステップ数: {args.max_train_steps}")

    progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
    global_step = 0

    noise_scheduler = DDPMScheduler(
        beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
    )
#     prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
    
    if args.zero_terminal_snr:
        custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)

    prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
    
    if args.zero_terminal_snr:
        custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
    edm2_weighting = __import__('t').EDM2WeightingWrapper(noise_scheduler=noise_scheduler)
    if accelerator.is_main_process:
        init_kwargs = {}
        if args.wandb_run_name:
            init_kwargs["wandb"] = {"name": args.wandb_run_name}
        if args.log_tracker_config is not None:
            init_kwargs = toml.load(args.log_tracker_config)
        accelerator.init_trackers(
            "finetuning" if args.log_tracker_name is None else args.log_tracker_name,
            config=train_util.get_sanitized_config_or_none(args),
            init_kwargs=init_kwargs,
        )

    # For --sample_at_first
    sdxl_train_util.sample_images(
        accelerator, args, 0, global_step, accelerator.device, vae, [tokenizer1, tokenizer2], [text_encoder1, text_encoder2], unet
    )

    loss_recorder = train_util.LossRecorder()
    for epoch in range(num_train_epochs):
        accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
        current_epoch.value = epoch + 1

        for m in training_models:
            m.train()

        for step, batch in enumerate(train_dataloader):
            current_step.value = global_step

            if args.fused_optimizer_groups:
                optimizer_hooked_count = {i: 0 for i in range(len(optimizers))}  # reset counter for each step

            with accelerator.accumulate(*training_models):
                if "latents" in batch and batch["latents"] is not None:
                    latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype)
                else:
                    with torch.no_grad():
                        # latentに変換
                        latents = vae.encode(batch["images"].to(vae_dtype)).latent_dist.sample().to(weight_dtype)

                        # NaNが含まれていれば警告を表示し0に置き換える
                        if torch.any(torch.isnan(latents)):
                            accelerator.print("NaN found in latents, replacing with zeros")
                            latents = torch.nan_to_num(latents, 0, out=latents)
                latents = latents * sdxl_model_util.VAE_SCALE_FACTOR

                if "text_encoder_outputs1_list" not in batch or batch["text_encoder_outputs1_list"] is None:
                    input_ids1 = batch["input_ids"]
                    input_ids2 = batch["input_ids2"]
                    with torch.set_grad_enabled(args.train_text_encoder):
                        # Get the text embedding for conditioning
                        # TODO support weighted captions
                        # if args.weighted_captions:
                        #     encoder_hidden_states = get_weighted_text_embeddings(
                        #         tokenizer,
                        #         text_encoder,
                        #         batch["captions"],
                        #         accelerator.device,
                        #         args.max_token_length // 75 if args.max_token_length else 1,
                        #         clip_skip=args.clip_skip,
                        #     )
                        # else:
                        input_ids1 = input_ids1.to(accelerator.device)
                        input_ids2 = input_ids2.to(accelerator.device)
                        # unwrap_model is fine for models not wrapped by accelerator
                        encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl(
                            args.max_token_length,
                            input_ids1,
                            input_ids2,
                            tokenizer1,
                            tokenizer2,
                            text_encoder1,
                            text_encoder2,
                            None if not args.full_fp16 else weight_dtype,
                            accelerator=accelerator,
                        )
                else:
                    encoder_hidden_states1 = batch["text_encoder_outputs1_list"].to(accelerator.device).to(weight_dtype)
                    encoder_hidden_states2 = batch["text_encoder_outputs2_list"].to(accelerator.device).to(weight_dtype)
                    pool2 = batch["text_encoder_pool2_list"].to(accelerator.device).to(weight_dtype)

                    # # verify that the text encoder outputs are correct
                    # ehs1, ehs2, p2 = train_util.get_hidden_states_sdxl(
                    #     args.max_token_length,
                    #     batch["input_ids"].to(text_encoder1.device),
                    #     batch["input_ids2"].to(text_encoder1.device),
                    #     tokenizer1,
                    #     tokenizer2,
                    #     text_encoder1,
                    #     text_encoder2,
                    #     None if not args.full_fp16 else weight_dtype,
                    # )
                    # b_size = encoder_hidden_states1.shape[0]
                    # assert ((encoder_hidden_states1.to("cpu") - ehs1.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
                    # assert ((encoder_hidden_states2.to("cpu") - ehs2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
                    # assert ((pool2.to("cpu") - p2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
                    # logger.info("text encoder outputs verified")

                # get size embeddings
                orig_size = batch["original_sizes_hw"]
                crop_size = batch["crop_top_lefts"]
                target_size = batch["target_sizes_hw"]
                embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)

                # concat embeddings
                vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
                text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)

                # Sample noise, sample a random timestep for each image, and add noise to the latents,
                # with noise offset and/or multires noise if specified
                noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(
                    args, noise_scheduler, latents
                )

                noisy_latents = noisy_latents.to(weight_dtype)  # TODO check why noisy_latents is not weight_dtype

                # Predict the noise residual
                with accelerator.autocast():
                    noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)

                if args.v_parameterization:
                    # v-parameterization training
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    target = noise

                if (
                    args.min_snr_gamma
                    or args.scale_v_pred_loss_like_noise_pred
                    or args.v_pred_like_loss
                    or args.debiased_estimation_loss
                    or args.masked_loss
                ):
                    # do not mean over batch dimension for snr weight or scale v-pred loss
                    loss = train_util.conditional_loss(
                        noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c
                    )
                    if args.masked_loss or ("alpha_masks" in batch and batch["alpha_masks"] is not None):
                        loss = apply_masked_loss(loss, batch)
                    loss = loss.mean([1, 2, 3])

                    if args.min_snr_gamma:
                        loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization)
                    if args.scale_v_pred_loss_like_noise_pred:
                        loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
                    if args.v_pred_like_loss:
                        loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss)
                    if args.debiased_estimation_loss:
                        loss = apply_debiased_estimation(loss, timesteps, noise_scheduler, args.v_parameterization)
                    loss = edm2_weighting(loss, timesteps)
#                    print(f"Loss after edm2_weighting: {loss.shape}") 
                    loss = loss.mean()  # mean over batch dimension
                else:
                    loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c)
                    loss = loss.mean([1, 2, 3])
                    loss = edm2_weighting(loss, timesteps)
                    loss = loss.mean()
                    
                accelerator.backward(loss)

                if not (args.fused_backward_pass or args.fused_optimizer_groups):
                    if accelerator.sync_gradients and args.max_grad_norm != 0.0:
                        params_to_clip = []
                        for m in training_models:
                            params_to_clip.extend(m.parameters())
                        accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)

                    optimizer.step()
                    lr_scheduler.step()
                    optimizer.zero_grad(set_to_none=True)
                else:
                    # optimizer.step() and optimizer.zero_grad() are called in the optimizer hook
                    lr_scheduler.step()
                    if args.fused_optimizer_groups:
                        for i in range(1, len(optimizers)):
                            lr_schedulers[i].step()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

                sdxl_train_util.sample_images(
                    accelerator,
                    args,
                    None,
                    global_step,
                    accelerator.device,
                    vae,
                    [tokenizer1, tokenizer2],
                    [text_encoder1, text_encoder2],
                    unet,
                )

                # 指定ステップごとにモデルを保存
                if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
                    accelerator.wait_for_everyone()
                    if accelerator.is_main_process:
                        edm2_weighting.save_model(f"learned-loss-weights-{epoch + 1}.sft")
                        src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
                        sdxl_train_util.save_sd_model_on_epoch_end_or_stepwise(
                            args,
                            False,
                            accelerator,
                            src_path,
                            save_stable_diffusion_format,
                            use_safetensors,
                            save_dtype,
                            epoch,
                            num_train_epochs,
                            global_step,
                            accelerator.unwrap_model(text_encoder1),
                            accelerator.unwrap_model(text_encoder2),
                            accelerator.unwrap_model(unet),
                            vae,
                            logit_scale,
                            ckpt_info,
                        )

            current_loss = loss.detach().item()  # 平均なのでbatch sizeは関係ないはず
            if args.logging_dir is not None:
                logs = {"loss": current_loss}
                if block_lrs is None:
                    train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=train_unet)
                else:
                    append_block_lr_to_logs(block_lrs, logs, lr_scheduler, args.optimizer_type)  # U-Net is included in block_lrs

                accelerator.log(logs, step=global_step)

            loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
            avr_loss: float = loss_recorder.moving_average
            logs = {"avr_loss": avr_loss}  # , "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)

            if global_step >= args.max_train_steps:
                break

        if args.logging_dir is not None:
            logs = {"loss/epoch": loss_recorder.moving_average}
            accelerator.log(logs, step=epoch + 1)

        accelerator.wait_for_everyone()

        if args.save_every_n_epochs is not None:
            if accelerator.is_main_process:
                src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
                sdxl_train_util.save_sd_model_on_epoch_end_or_stepwise(
                    args,
                    True,
                    accelerator,
                    src_path,
                    save_stable_diffusion_format,
                    use_safetensors,
                    save_dtype,
                    epoch,
                    num_train_epochs,
                    global_step,
                    accelerator.unwrap_model(text_encoder1),
                    accelerator.unwrap_model(text_encoder2),
                    accelerator.unwrap_model(unet),
                    vae,
                    logit_scale,
                    ckpt_info,
                )

        sdxl_train_util.sample_images(
            accelerator,
            args,
            epoch + 1,
            global_step,
            accelerator.device,
            vae,
            [tokenizer1, tokenizer2],
            [text_encoder1, text_encoder2],
            unet,
        )

    is_main_process = accelerator.is_main_process
    # if is_main_process:
    unet = accelerator.unwrap_model(unet)
    text_encoder1 = accelerator.unwrap_model(text_encoder1)
    text_encoder2 = accelerator.unwrap_model(text_encoder2)

    accelerator.end_training()

    if args.save_state or args.save_state_on_train_end:
        train_util.save_state_on_train_end(args, accelerator)

    del accelerator  # この後メモリを使うのでこれは消す

    if is_main_process:
        src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
        sdxl_train_util.save_sd_model_on_train_end(
            args,
            src_path,
            save_stable_diffusion_format,
            use_safetensors,
            save_dtype,
            epoch,
            global_step,
            text_encoder1,
            text_encoder2,
            unet,
            vae,
            logit_scale,
            ckpt_info,
        )
        logger.info("model saved.")


def setup_parser() -> argparse.ArgumentParser:
    parser = argparse.ArgumentParser()

    add_logging_arguments(parser)
    train_util.add_sd_models_arguments(parser)
    train_util.add_dataset_arguments(parser, True, True, True)
    train_util.add_training_arguments(parser, False)
    train_util.add_masked_loss_arguments(parser)
    deepspeed_utils.add_deepspeed_arguments(parser)
    train_util.add_sd_saving_arguments(parser)
    train_util.add_optimizer_arguments(parser)
    config_util.add_config_arguments(parser)
    custom_train_functions.add_custom_train_arguments(parser)
    sdxl_train_util.add_sdxl_training_arguments(parser)

    parser.add_argument(
        "--learning_rate_te1",
        type=float,
        default=None,
        help="learning rate for text encoder 1 (ViT-L) / text encoder 1 (ViT-L)の学習率",
    )
    parser.add_argument(
        "--learning_rate_te2",
        type=float,
        default=None,
        help="learning rate for text encoder 2 (BiG-G) / text encoder 2 (BiG-G)の学習率",
    )

    parser.add_argument(
        "--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する"
    )
    parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する")
    parser.add_argument(
        "--no_half_vae",
        action="store_true",
        help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
    )
    parser.add_argument(
        "--block_lr",
        type=str,
        default=None,
        help=f"learning rates for each block of U-Net, comma-separated, {UNET_NUM_BLOCKS_FOR_BLOCK_LR} values / "
        + f"U-Netの各ブロックの学習率、カンマ区切り、{UNET_NUM_BLOCKS_FOR_BLOCK_LR}個の値",
    )
    parser.add_argument(
        "--fused_optimizer_groups",
        type=int,
        default=None,
        help="number of optimizers for fused backward pass and optimizer step / fused backward passとoptimizer stepのためのoptimizer数",
    )
    return parser


if __name__ == "__main__":
    parser = setup_parser()

    args = parser.parse_args()
    train_util.verify_command_line_training_args(args)
    args = train_util.read_config_from_file(args, parser)

    train(args)