# coding=utf-8 """ MiniCPMV model configuration""" import os from typing import Union from transformers import PretrainedConfig, Qwen2Config from transformers.utils import logging from .modeling_navit_siglip import SiglipVisionConfig logger = logging.get_logger(__name__) class MiniCPMVSliceConfig(PretrainedConfig): model_type = "minicpmv" def __init__( self, patch_size=14, max_slice_nums=9, scale_resolution=448, **kwargs, ): super().__init__(**kwargs) self.patch_size = patch_size self.max_slice_nums = max_slice_nums self.scale_resolution = scale_resolution @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) if config_dict.get("model_type") == "minicpmv": config_dict = config_dict["slice_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class MiniCPMVConfig(Qwen2Config): model_type = "minicpmv" keys_to_ignore_at_inference = ["past_key_values"] default_vision_config = { "hidden_size": 1152, "image_size": 980, "intermediate_size": 4304, "model_type": "siglip", "num_attention_heads": 16, "num_hidden_layers": 27, "patch_size": 14, } def __init__( self, use_cache=True, query_num=64, image_size=448, drop_vision_last_layer=True, batch_vision_input=True, slice_config=None, vision_config=None, use_image_id=True, vision_batch_size=16, **kwargs, ): self.use_cache = use_cache self.query_num = query_num self.image_size = image_size self.drop_vision_last_layer = drop_vision_last_layer self.batch_vision_input = batch_vision_input self.use_image_id = use_image_id self.vision_batch_size = vision_batch_size if slice_config is None: self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1) else: self.slice_config = MiniCPMVSliceConfig(**slice_config) self.slice_mode = True # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes if vision_config is None: self.vision_config = SiglipVisionConfig(**self.default_vision_config) logger.info("vision_config is None, using default vision config") elif isinstance(vision_config, dict): self.vision_config = SiglipVisionConfig(**vision_config) elif isinstance(vision_config, SiglipVisionConfig): self.vision_config = vision_config self.patch_size = self.vision_config.patch_size super().__init__(**kwargs)