--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - ja --- # Uploaded Model - **Developed by:** kattyan - **License:** apache-2.0 - **Finetuned from model:** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 # Usage ```python from unsloth import FastLanguageModel model_name = "llm-jp/llm-jp-3-13b" # モデル名 max_seq_length = 512 # 最大シーケンス長 dtype = None # データ型(None で自動設定) load_in_4bit = True # 4bit量子化を使用 # モデルとトークナイザーのロード model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_name, max_seq_length=max_seq_length, dtype=dtype, load_in_4bit=load_in_4bit, token="YOUR_HUGGING_FACE_TOKEN", # Hugging Face トークンを指定 ) # 推論用にモデルを準備 FastLanguageModel.for_inference(model) # プロンプトの設定 prompt = "LLMとはなんですか?" # トークナイザーで入力をエンコード inputs = tokenizer([prompt], return_tensors="pt").to(model.device) # モデルで生成を行う outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2) # 出力のデコード prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] print(prediction) ```