karsar commited on
Commit
f361df7
1 Parent(s): 461b931

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,538 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
3
+ language:
4
+ - hu
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ metrics:
8
+ - cosine_accuracy
9
+ - dot_accuracy
10
+ - manhattan_accuracy
11
+ - euclidean_accuracy
12
+ - max_accuracy
13
+ pipeline_tag: sentence-similarity
14
+ tags:
15
+ - sentence-transformers
16
+ - sentence-similarity
17
+ - feature-extraction
18
+ - generated_from_trainer
19
+ - dataset_size:857856
20
+ - loss:MultipleNegativesRankingLoss
21
+ widget:
22
+ - source_sentence: Emberek várnak a lámpánál kerékpárral.
23
+ sentences:
24
+ - Az emberek piros lámpánál haladnak.
25
+ - Az emberek a kerékpárjukon vannak.
26
+ - Egy fekete kutya úszik a vízben egy teniszlabdával a szájában
27
+ - source_sentence: A kutya a vízben van.
28
+ sentences:
29
+ - Két férfi takarítja a havat a tetőről, az egyik egy emelőben ül, a másik pedig
30
+ a tetőn.
31
+ - A macska a vízben van, és dühös.
32
+ - Egy kutya van a vízben, a szájában egy faág.
33
+ - source_sentence: A nő feketét visel.
34
+ sentences:
35
+ - Egy barna kutya fröcsköl, ahogy úszik a vízben.
36
+ - Egy tetoválással rendelkező nő, aki fekete tank tetején néz a földre.
37
+ - 'Egy kékbe öltözött nő intenzív arckifejezéssel üti a teniszlabdát. A képen:'
38
+ - source_sentence: Az emberek alszanak.
39
+ sentences:
40
+ - Három ember beszélget egy városi utcán.
41
+ - A nő fehéret visel.
42
+ - Egy apa és a fia ölelgeti alvás közben.
43
+ - source_sentence: Az emberek alszanak.
44
+ sentences:
45
+ - Egy feketébe öltözött nő cigarettát és bevásárlótáskát tart a kezében, miközben
46
+ egy idősebb nő átmegy az utcán.
47
+ - Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy
48
+ sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős
49
+ elmosódás tesz kivehetetlenné.
50
+ - Egy apa és a fia ölelgeti alvás közben.
51
+ model-index:
52
+ - name: e5-base_hun
53
+ results:
54
+ - task:
55
+ type: triplet
56
+ name: Triplet
57
+ dataset:
58
+ name: all nli dev
59
+ type: all-nli-dev
60
+ metrics:
61
+ - type: cosine_accuracy
62
+ value: 0.992
63
+ name: Cosine Accuracy
64
+ - type: dot_accuracy
65
+ value: 0.0108
66
+ name: Dot Accuracy
67
+ - type: manhattan_accuracy
68
+ value: 0.9908
69
+ name: Manhattan Accuracy
70
+ - type: euclidean_accuracy
71
+ value: 0.9908
72
+ name: Euclidean Accuracy
73
+ - type: max_accuracy
74
+ value: 0.992
75
+ name: Max Accuracy
76
+ - task:
77
+ type: triplet
78
+ name: Triplet
79
+ dataset:
80
+ name: all nli test
81
+ type: all-nli-test
82
+ metrics:
83
+ - type: cosine_accuracy
84
+ value: 0.9913636363636363
85
+ name: Cosine Accuracy
86
+ - type: dot_accuracy
87
+ value: 0.013939393939393939
88
+ name: Dot Accuracy
89
+ - type: manhattan_accuracy
90
+ value: 0.990909090909091
91
+ name: Manhattan Accuracy
92
+ - type: euclidean_accuracy
93
+ value: 0.9910606060606061
94
+ name: Euclidean Accuracy
95
+ - type: max_accuracy
96
+ value: 0.9913636363636363
97
+ name: Max Accuracy
98
+ ---
99
+
100
+ # e5-base_hun
101
+
102
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the train dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
103
+
104
+ ## Model Details
105
+
106
+ ### Model Description
107
+ - **Model Type:** Sentence Transformer
108
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision ae06c001a2546bef168b9bf8f570ccb1a16aaa27 -->
109
+ - **Maximum Sequence Length:** 128 tokens
110
+ - **Output Dimensionality:** 384 tokens
111
+ - **Similarity Function:** Cosine Similarity
112
+ - **Training Dataset:**
113
+ - train
114
+ - **Language:** hu
115
+ - **License:** apache-2.0
116
+
117
+ ### Model Sources
118
+
119
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
120
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
121
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
122
+
123
+ ### Full Model Architecture
124
+
125
+ ```
126
+ SentenceTransformer(
127
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
128
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
129
+ )
130
+ ```
131
+
132
+ ## Usage
133
+
134
+ ### Direct Usage (Sentence Transformers)
135
+
136
+ First install the Sentence Transformers library:
137
+
138
+ ```bash
139
+ pip install -U sentence-transformers
140
+ ```
141
+
142
+ Then you can load this model and run inference.
143
+ ```python
144
+ from sentence_transformers import SentenceTransformer
145
+
146
+ # Download from the 🤗 Hub
147
+ model = SentenceTransformer("karsar/paraphrase-multilingual-MiniLM-L12-hu_v1")
148
+ # Run inference
149
+ sentences = [
150
+ 'Az emberek alszanak.',
151
+ 'Egy apa és a fia ölelgeti alvás közben.',
152
+ 'Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős elmosódás tesz kivehetetlenné.',
153
+ ]
154
+ embeddings = model.encode(sentences)
155
+ print(embeddings.shape)
156
+ # [3, 384]
157
+
158
+ # Get the similarity scores for the embeddings
159
+ similarities = model.similarity(embeddings, embeddings)
160
+ print(similarities.shape)
161
+ # [3, 3]
162
+ ```
163
+
164
+ <!--
165
+ ### Direct Usage (Transformers)
166
+
167
+ <details><summary>Click to see the direct usage in Transformers</summary>
168
+
169
+ </details>
170
+ -->
171
+
172
+ <!--
173
+ ### Downstream Usage (Sentence Transformers)
174
+
175
+ You can finetune this model on your own dataset.
176
+
177
+ <details><summary>Click to expand</summary>
178
+
179
+ </details>
180
+ -->
181
+
182
+ <!--
183
+ ### Out-of-Scope Use
184
+
185
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
186
+ -->
187
+
188
+ ## Evaluation
189
+
190
+ ### Metrics
191
+
192
+ #### Triplet
193
+ * Dataset: `all-nli-dev`
194
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
195
+
196
+ | Metric | Value |
197
+ |:-------------------|:----------|
198
+ | cosine_accuracy | 0.992 |
199
+ | dot_accuracy | 0.0108 |
200
+ | manhattan_accuracy | 0.9908 |
201
+ | euclidean_accuracy | 0.9908 |
202
+ | **max_accuracy** | **0.992** |
203
+
204
+ #### Triplet
205
+ * Dataset: `all-nli-test`
206
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
207
+
208
+ | Metric | Value |
209
+ |:-------------------|:-----------|
210
+ | cosine_accuracy | 0.9914 |
211
+ | dot_accuracy | 0.0139 |
212
+ | manhattan_accuracy | 0.9909 |
213
+ | euclidean_accuracy | 0.9911 |
214
+ | **max_accuracy** | **0.9914** |
215
+
216
+ <!--
217
+ ## Bias, Risks and Limitations
218
+
219
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
220
+ -->
221
+
222
+ <!--
223
+ ### Recommendations
224
+
225
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
226
+ -->
227
+
228
+ ## Training Details
229
+
230
+ ### Training Dataset
231
+
232
+ #### train
233
+
234
+ * Dataset: train
235
+ * Size: 857,856 training samples
236
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
237
+ * Approximate statistics based on the first 1000 samples:
238
+ | | anchor | positive | negative |
239
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
240
+ | type | string | string | string |
241
+ | details | <ul><li>min: 7 tokens</li><li>mean: 11.73 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.24 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.07 tokens</li><li>max: 53 tokens</li></ul> |
242
+ * Samples:
243
+ | anchor | positive | negative |
244
+ |:---------------------------------------------------------------------------|:----------------------------------------------|:---------------------------------------------------------------|
245
+ | <code>Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett.</code> | <code>Egy ember a szabadban, lóháton.</code> | <code>Egy ember egy étteremben van, és omlettet rendel.</code> |
246
+ | <code>Gyerekek mosolyogva és integetett a kamera</code> | <code>Gyermekek vannak jelen</code> | <code>A gyerekek homlokot rántanak</code> |
247
+ | <code>Egy fiú ugrál a gördeszkát a közepén egy piros híd.</code> | <code>A fiú gördeszkás trükköt csinál.</code> | <code>A fiú korcsolyázik a járdán.</code> |
248
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
249
+ ```json
250
+ {
251
+ "scale": 20.0,
252
+ "similarity_fct": "cos_sim"
253
+ }
254
+ ```
255
+
256
+ ### Evaluation Dataset
257
+
258
+ #### train
259
+
260
+ * Dataset: train
261
+ * Size: 5,000 evaluation samples
262
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
263
+ * Approximate statistics based on the first 1000 samples:
264
+ | | anchor | positive | negative |
265
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
266
+ | type | string | string | string |
267
+ | details | <ul><li>min: 7 tokens</li><li>mean: 11.73 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.24 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.07 tokens</li><li>max: 53 tokens</li></ul> |
268
+ * Samples:
269
+ | anchor | positive | negative |
270
+ |:---------------------------------------------------------------------------|:----------------------------------------------|:---------------------------------------------------------------|
271
+ | <code>Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett.</code> | <code>Egy ember a szabadban, lóháton.</code> | <code>Egy ember egy étteremben van, és omlettet rendel.</code> |
272
+ | <code>Gyerekek mosolyogva és integetett a kamera</code> | <code>Gyermekek vannak jelen</code> | <code>A gyerekek homlokot rántanak</code> |
273
+ | <code>Egy fiú ugrál a gördeszkát a közepén egy piros híd.</code> | <code>A fiú gördeszkás trükköt csinál.</code> | <code>A fiú korcsolyázik a járdán.</code> |
274
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
275
+ ```json
276
+ {
277
+ "scale": 20.0,
278
+ "similarity_fct": "cos_sim"
279
+ }
280
+ ```
281
+
282
+ ### Training Hyperparameters
283
+ #### Non-Default Hyperparameters
284
+
285
+ - `eval_strategy`: steps
286
+ - `per_device_train_batch_size`: 128
287
+ - `per_device_eval_batch_size`: 128
288
+ - `num_train_epochs`: 1
289
+ - `warmup_ratio`: 0.1
290
+ - `bf16`: True
291
+ - `batch_sampler`: no_duplicates
292
+
293
+ #### All Hyperparameters
294
+ <details><summary>Click to expand</summary>
295
+
296
+ - `overwrite_output_dir`: False
297
+ - `do_predict`: False
298
+ - `eval_strategy`: steps
299
+ - `prediction_loss_only`: True
300
+ - `per_device_train_batch_size`: 128
301
+ - `per_device_eval_batch_size`: 128
302
+ - `per_gpu_train_batch_size`: None
303
+ - `per_gpu_eval_batch_size`: None
304
+ - `gradient_accumulation_steps`: 1
305
+ - `eval_accumulation_steps`: None
306
+ - `torch_empty_cache_steps`: None
307
+ - `learning_rate`: 5e-05
308
+ - `weight_decay`: 0.0
309
+ - `adam_beta1`: 0.9
310
+ - `adam_beta2`: 0.999
311
+ - `adam_epsilon`: 1e-08
312
+ - `max_grad_norm`: 1.0
313
+ - `num_train_epochs`: 1
314
+ - `max_steps`: -1
315
+ - `lr_scheduler_type`: linear
316
+ - `lr_scheduler_kwargs`: {}
317
+ - `warmup_ratio`: 0.1
318
+ - `warmup_steps`: 0
319
+ - `log_level`: passive
320
+ - `log_level_replica`: warning
321
+ - `log_on_each_node`: True
322
+ - `logging_nan_inf_filter`: True
323
+ - `save_safetensors`: True
324
+ - `save_on_each_node`: False
325
+ - `save_only_model`: False
326
+ - `restore_callback_states_from_checkpoint`: False
327
+ - `no_cuda`: False
328
+ - `use_cpu`: False
329
+ - `use_mps_device`: False
330
+ - `seed`: 42
331
+ - `data_seed`: None
332
+ - `jit_mode_eval`: False
333
+ - `use_ipex`: False
334
+ - `bf16`: True
335
+ - `fp16`: False
336
+ - `fp16_opt_level`: O1
337
+ - `half_precision_backend`: auto
338
+ - `bf16_full_eval`: False
339
+ - `fp16_full_eval`: False
340
+ - `tf32`: None
341
+ - `local_rank`: 0
342
+ - `ddp_backend`: None
343
+ - `tpu_num_cores`: None
344
+ - `tpu_metrics_debug`: False
345
+ - `debug`: []
346
+ - `dataloader_drop_last`: False
347
+ - `dataloader_num_workers`: 0
348
+ - `dataloader_prefetch_factor`: None
349
+ - `past_index`: -1
350
+ - `disable_tqdm`: False
351
+ - `remove_unused_columns`: True
352
+ - `label_names`: None
353
+ - `load_best_model_at_end`: False
354
+ - `ignore_data_skip`: False
355
+ - `fsdp`: []
356
+ - `fsdp_min_num_params`: 0
357
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
358
+ - `fsdp_transformer_layer_cls_to_wrap`: None
359
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
360
+ - `deepspeed`: None
361
+ - `label_smoothing_factor`: 0.0
362
+ - `optim`: adamw_torch
363
+ - `optim_args`: None
364
+ - `adafactor`: False
365
+ - `group_by_length`: False
366
+ - `length_column_name`: length
367
+ - `ddp_find_unused_parameters`: None
368
+ - `ddp_bucket_cap_mb`: None
369
+ - `ddp_broadcast_buffers`: False
370
+ - `dataloader_pin_memory`: True
371
+ - `dataloader_persistent_workers`: False
372
+ - `skip_memory_metrics`: True
373
+ - `use_legacy_prediction_loop`: False
374
+ - `push_to_hub`: False
375
+ - `resume_from_checkpoint`: None
376
+ - `hub_model_id`: None
377
+ - `hub_strategy`: every_save
378
+ - `hub_private_repo`: False
379
+ - `hub_always_push`: False
380
+ - `gradient_checkpointing`: False
381
+ - `gradient_checkpointing_kwargs`: None
382
+ - `include_inputs_for_metrics`: False
383
+ - `eval_do_concat_batches`: True
384
+ - `fp16_backend`: auto
385
+ - `push_to_hub_model_id`: None
386
+ - `push_to_hub_organization`: None
387
+ - `mp_parameters`:
388
+ - `auto_find_batch_size`: False
389
+ - `full_determinism`: False
390
+ - `torchdynamo`: None
391
+ - `ray_scope`: last
392
+ - `ddp_timeout`: 1800
393
+ - `torch_compile`: False
394
+ - `torch_compile_backend`: None
395
+ - `torch_compile_mode`: None
396
+ - `dispatch_batches`: None
397
+ - `split_batches`: None
398
+ - `include_tokens_per_second`: False
399
+ - `include_num_input_tokens_seen`: False
400
+ - `neftune_noise_alpha`: None
401
+ - `optim_target_modules`: None
402
+ - `batch_eval_metrics`: False
403
+ - `eval_on_start`: False
404
+ - `eval_use_gather_object`: False
405
+ - `batch_sampler`: no_duplicates
406
+ - `multi_dataset_batch_sampler`: proportional
407
+
408
+ </details>
409
+
410
+ ### Training Logs
411
+ | Epoch | Step | Training Loss | train loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
412
+ |:------:|:----:|:-------------:|:----------:|:------------------------:|:-------------------------:|
413
+ | 0 | 0 | - | - | 0.7574 | - |
414
+ | 0.0149 | 100 | 2.5002 | - | - | - |
415
+ | 0.0298 | 200 | 1.9984 | - | - | - |
416
+ | 0.0448 | 300 | 1.8094 | - | - | - |
417
+ | 0.0597 | 400 | 1.6704 | - | - | - |
418
+ | 0.0746 | 500 | 1.5518 | - | - | - |
419
+ | 0.0895 | 600 | 1.449 | - | - | - |
420
+ | 0.1044 | 700 | 1.5998 | - | - | - |
421
+ | 0.1194 | 800 | 1.5725 | - | - | - |
422
+ | 0.1343 | 900 | 1.5341 | - | - | - |
423
+ | 0.1492 | 1000 | 1.3423 | - | - | - |
424
+ | 0.1641 | 1100 | 1.2485 | - | - | - |
425
+ | 0.1791 | 1200 | 1.1527 | - | - | - |
426
+ | 0.1940 | 1300 | 1.1672 | - | - | - |
427
+ | 0.2089 | 1400 | 1.2426 | - | - | - |
428
+ | 0.2238 | 1500 | 1.0948 | - | - | - |
429
+ | 0.2387 | 1600 | 1.0069 | - | - | - |
430
+ | 0.2537 | 1700 | 0.976 | - | - | - |
431
+ | 0.2686 | 1800 | 0.897 | - | - | - |
432
+ | 0.2835 | 1900 | 0.7825 | - | - | - |
433
+ | 0.2984 | 2000 | 0.9421 | 0.1899 | 0.9568 | - |
434
+ | 0.3133 | 2100 | 0.8651 | - | - | - |
435
+ | 0.3283 | 2200 | 0.8184 | - | - | - |
436
+ | 0.3432 | 2300 | 0.699 | - | - | - |
437
+ | 0.3581 | 2400 | 0.6704 | - | - | - |
438
+ | 0.3730 | 2500 | 0.6477 | - | - | - |
439
+ | 0.3879 | 2600 | 0.7077 | - | - | - |
440
+ | 0.4029 | 2700 | 0.7364 | - | - | - |
441
+ | 0.4178 | 2800 | 0.665 | - | - | - |
442
+ | 0.4327 | 2900 | 1.2512 | - | - | - |
443
+ | 0.4476 | 3000 | 1.3693 | - | - | - |
444
+ | 0.4625 | 3100 | 1.3959 | - | - | - |
445
+ | 0.4775 | 3200 | 1.4175 | - | - | - |
446
+ | 0.4924 | 3300 | 1.402 | - | - | - |
447
+ | 0.5073 | 3400 | 1.3832 | - | - | - |
448
+ | 0.5222 | 3500 | 1.3671 | - | - | - |
449
+ | 0.5372 | 3600 | 1.3666 | - | - | - |
450
+ | 0.5521 | 3700 | 1.3479 | - | - | - |
451
+ | 0.5670 | 3800 | 1.3272 | - | - | - |
452
+ | 0.5819 | 3900 | 1.3353 | - | - | - |
453
+ | 0.5968 | 4000 | 1.3177 | 0.0639 | 0.9902 | - |
454
+ | 0.6118 | 4100 | 1.3068 | - | - | - |
455
+ | 0.6267 | 4200 | 1.3054 | - | - | - |
456
+ | 0.6416 | 4300 | 1.3098 | - | - | - |
457
+ | 0.6565 | 4400 | 1.2839 | - | - | - |
458
+ | 0.6714 | 4500 | 1.2976 | - | - | - |
459
+ | 0.6864 | 4600 | 1.2669 | - | - | - |
460
+ | 0.7013 | 4700 | 1.208 | - | - | - |
461
+ | 0.7162 | 4800 | 1.194 | - | - | - |
462
+ | 0.7311 | 4900 | 1.1974 | - | - | - |
463
+ | 0.7460 | 5000 | 1.1834 | - | - | - |
464
+ | 0.7610 | 5100 | 1.1876 | - | - | - |
465
+ | 0.7759 | 5200 | 1.1743 | - | - | - |
466
+ | 0.7908 | 5300 | 1.1839 | - | - | - |
467
+ | 0.8057 | 5400 | 1.1778 | - | - | - |
468
+ | 0.8207 | 5500 | 1.1711 | - | - | - |
469
+ | 0.8356 | 5600 | 1.1809 | - | - | - |
470
+ | 0.8505 | 5700 | 1.1825 | - | - | - |
471
+ | 0.8654 | 5800 | 1.1795 | - | - | - |
472
+ | 0.8803 | 5900 | 1.1788 | - | - | - |
473
+ | 0.8953 | 6000 | 1.1819 | 0.0371 | 0.992 | - |
474
+ | 0.9102 | 6100 | 1.1741 | - | - | - |
475
+ | 0.9251 | 6200 | 1.1871 | - | - | - |
476
+ | 0.9400 | 6300 | 0.498 | - | - | - |
477
+ | 0.9549 | 6400 | 0.093 | - | - | - |
478
+ | 0.9699 | 6500 | 0.1597 | - | - | - |
479
+ | 0.9848 | 6600 | 0.2033 | - | - | - |
480
+ | 0.9997 | 6700 | 0.16 | - | - | - |
481
+ | 1.0 | 6702 | - | - | - | 0.9914 |
482
+
483
+
484
+ ### Framework Versions
485
+ - Python: 3.11.8
486
+ - Sentence Transformers: 3.1.1
487
+ - Transformers: 4.44.0
488
+ - PyTorch: 2.3.0.post101
489
+ - Accelerate: 0.33.0
490
+ - Datasets: 2.18.0
491
+ - Tokenizers: 0.19.0
492
+
493
+ ## Citation
494
+
495
+ ### BibTeX
496
+
497
+ #### Sentence Transformers
498
+ ```bibtex
499
+ @inproceedings{reimers-2019-sentence-bert,
500
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
501
+ author = "Reimers, Nils and Gurevych, Iryna",
502
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
503
+ month = "11",
504
+ year = "2019",
505
+ publisher = "Association for Computational Linguistics",
506
+ url = "https://arxiv.org/abs/1908.10084",
507
+ }
508
+ ```
509
+
510
+ #### MultipleNegativesRankingLoss
511
+ ```bibtex
512
+ @misc{henderson2017efficient,
513
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
514
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
515
+ year={2017},
516
+ eprint={1705.00652},
517
+ archivePrefix={arXiv},
518
+ primaryClass={cs.CL}
519
+ }
520
+ ```
521
+
522
+ <!--
523
+ ## Glossary
524
+
525
+ *Clearly define terms in order to be accessible across audiences.*
526
+ -->
527
+
528
+ <!--
529
+ ## Model Card Authors
530
+
531
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
532
+ -->
533
+
534
+ <!--
535
+ ## Model Card Contact
536
+
537
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
538
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.0",
5
+ "pytorch": "2.3.0.post101"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d47afd000b5a1a49fc090955a3e4bafa69e49a32c3f0d0e608e4faf26de6e908
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260