from typing import Dict, List, Any import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionInpaintPipeline, AutoPipelineForInpainting, AutoPipelineForImage2Image from PIL import Image import base64 from io import BytesIO # set device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device.type != 'cuda': raise ValueError("need to run on GPU") class EndpointHandler(): def __init__(self, path=""): # load StableDiffusionInpaintPipeline pipeline self.pipe = AutoPipelineForInpainting.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="fp16", torch_dtype=torch.float16, ) # use DPMSolverMultistepScheduler self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config) # move to device self.pipe = self.pipe.to(device) self.pipe2 = AutoPipelineForInpainting.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) self.pipe2.to("cuda") self.pipe3 = AutoPipelineForImage2Image.from_pipe(self.pipe2) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ :param data: A dictionary contains `inputs` and optional `image` field. :return: A dictionary with `image` field contains image in base64. """ encoded_image = data.pop("image", None) encoded_mask_image = data.pop("mask_image", None) prompt = data.pop("prompt", "") # process image if encoded_image is not None and encoded_mask_image is not None: image = self.decode_base64_image(encoded_image) mask_image = self.decode_base64_image(encoded_mask_image) else: image = None mask_image = None self.pipe.enable_xformers_memory_efficient_attention() # run inference pipeline out = self.pipe(prompt=prompt, image=image, mask_image=mask_image) image = out.images[0].resize((1024, 1024)) self.pipe2.enable_xformers_memory_efficient_attention() image = self.pipe2( prompt=prompt, image=image, mask_image=mask_image, guidance_scale=8.0, num_inference_steps=100, strength=0.2, output_type="latent", # let's keep in latent to save some VRAM ).images[0] self.pipe3.enable_xformers_memory_efficient_attention() image = self.pipe3( prompt=prompt, image=image, guidance_scale=8.0, num_inference_steps=100, strength=0.2, ).images[0] # return first generate PIL image return image # helper to decode input image def decode_base64_image(self, image_string): base64_image = base64.b64decode(image_string) buffer = BytesIO(base64_image) image = Image.open(buffer) return image