--- tags: - generated_from_trainer datasets: - kanishka/counterfactual_babylm_naans_new metrics: - accuracy model-index: - name: smolm-autoreg-bpe-counterfactual_babylm_naans_new-seed_211-1e-4 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/counterfactual_babylm_naans_new type: kanishka/counterfactual_babylm_naans_new metrics: - name: Accuracy type: accuracy value: 0.40601854249753977 --- # smolm-autoreg-bpe-counterfactual_babylm_naans_new-seed_211-1e-4 This model was trained from scratch on the kanishka/counterfactual_babylm_naans_new dataset. It achieves the following results on the evaluation set: - Loss: 3.4159 - Accuracy: 0.4060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 211 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 4.0574 | 1.0 | 18595 | 4.2668 | 0.3095 | | 3.574 | 2.0 | 37190 | 3.7340 | 0.3638 | | 3.3998 | 3.0 | 55785 | 3.5946 | 0.3793 | | 3.2908 | 4.0 | 74380 | 3.5169 | 0.3871 | | 3.2244 | 5.0 | 92975 | 3.4843 | 0.3919 | | 3.1723 | 6.0 | 111570 | 3.4423 | 0.3955 | | 3.1287 | 7.0 | 130165 | 3.4224 | 0.3987 | | 3.0995 | 8.0 | 148760 | 3.4119 | 0.4001 | | 3.0666 | 9.0 | 167355 | 3.4093 | 0.4014 | | 3.0395 | 10.0 | 185950 | 3.3993 | 0.4024 | | 3.0097 | 11.0 | 204545 | 3.4087 | 0.4031 | | 2.9923 | 12.0 | 223140 | 3.4030 | 0.4042 | | 2.9703 | 13.0 | 241735 | 3.3938 | 0.4047 | | 2.9483 | 14.0 | 260330 | 3.4000 | 0.4051 | | 2.9286 | 15.0 | 278925 | 3.4069 | 0.4048 | | 2.9143 | 16.0 | 297520 | 3.4020 | 0.4056 | | 2.8935 | 17.0 | 316115 | 3.4100 | 0.4055 | | 2.8782 | 18.0 | 334710 | 3.4071 | 0.4058 | | 2.8613 | 19.0 | 353305 | 3.4123 | 0.4062 | | 2.8439 | 20.0 | 371900 | 3.4159 | 0.4060 | ### Framework versions - Transformers 4.38.0 - Pytorch 2.3.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2