--- tags: - generated_from_trainer datasets: - kanishka/counterfactual_babylm_aann_low_variability_noun metrics: - accuracy model-index: - name: smolm-autoreg-bpe-counterfactual_babylm_aann_low_variability_noun_1024-1e-3 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/counterfactual_babylm_aann_low_variability_noun type: kanishka/counterfactual_babylm_aann_low_variability_noun metrics: - name: Accuracy type: accuracy value: 0.40927603188483547 --- # smolm-autoreg-bpe-counterfactual_babylm_aann_low_variability_noun_1024-1e-3 This model was trained from scratch on the kanishka/counterfactual_babylm_aann_low_variability_noun dataset. It achieves the following results on the evaluation set: - Loss: 3.4134 - Accuracy: 0.4093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 3.6017 | 1.0 | 18595 | 3.7832 | 0.3588 | | 3.3832 | 2.0 | 37190 | 3.5725 | 0.3809 | | 3.2557 | 3.0 | 55785 | 3.4670 | 0.3932 | | 3.1779 | 4.0 | 74380 | 3.4315 | 0.3979 | | 3.1207 | 5.0 | 92975 | 3.3998 | 0.4016 | | 3.0759 | 6.0 | 111570 | 3.3830 | 0.4037 | | 3.0401 | 7.0 | 130165 | 3.3819 | 0.4054 | | 3.0134 | 8.0 | 148760 | 3.3636 | 0.4073 | | 2.9862 | 9.0 | 167355 | 3.3830 | 0.4070 | | 2.9548 | 10.0 | 185950 | 3.3661 | 0.4078 | | 2.9335 | 11.0 | 204545 | 3.3690 | 0.4085 | | 2.9121 | 12.0 | 223140 | 3.3669 | 0.4088 | | 2.8942 | 13.0 | 241735 | 3.3727 | 0.4092 | | 2.8708 | 14.0 | 260330 | 3.3823 | 0.4091 | | 2.8487 | 15.0 | 278925 | 3.3783 | 0.4094 | | 2.8298 | 16.0 | 297520 | 3.3950 | 0.4091 | | 2.8116 | 17.0 | 316115 | 3.3998 | 0.4095 | | 2.7953 | 18.0 | 334710 | 3.4066 | 0.4092 | | 2.775 | 19.0 | 353305 | 3.4064 | 0.4094 | | 2.759 | 20.0 | 371900 | 3.4134 | 0.4093 | ### Framework versions - Transformers 4.38.0 - Pytorch 2.3.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2