--- tags: - generated_from_trainer datasets: - kanishka/counterfactual_babylm_aann_dtanns metrics: - accuracy model-index: - name: smolm-autoreg-bpe-counterfactual_babylm_aanns_dtanns-seed_1024-1e-4 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/counterfactual_babylm_aann_dtanns type: kanishka/counterfactual_babylm_aann_dtanns metrics: - name: Accuracy type: accuracy value: 0.4055823320854937 --- # smolm-autoreg-bpe-counterfactual_babylm_aanns_dtanns-seed_1024-1e-4 This model was trained from scratch on the kanishka/counterfactual_babylm_aann_dtanns dataset. It achieves the following results on the evaluation set: - Loss: 3.4264 - Accuracy: 0.4056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 4.0514 | 1.0 | 18595 | 4.2435 | 0.3101 | | 3.5672 | 2.0 | 37190 | 3.7652 | 0.3622 | | 3.3933 | 3.0 | 55785 | 3.5859 | 0.3792 | | 3.2939 | 4.0 | 74380 | 3.5397 | 0.3863 | | 3.2248 | 5.0 | 92975 | 3.4728 | 0.3919 | | 3.173 | 6.0 | 111570 | 3.4672 | 0.3950 | | 3.1332 | 7.0 | 130165 | 3.4249 | 0.3987 | | 3.0958 | 8.0 | 148760 | 3.4232 | 0.3998 | | 3.0709 | 9.0 | 167355 | 3.4138 | 0.4012 | | 3.0426 | 10.0 | 185950 | 3.4269 | 0.4014 | | 3.0138 | 11.0 | 204545 | 3.4023 | 0.4037 | | 2.995 | 12.0 | 223140 | 3.4037 | 0.4035 | | 2.9702 | 13.0 | 241735 | 3.3991 | 0.4043 | | 2.954 | 14.0 | 260330 | 3.4180 | 0.4042 | | 2.9299 | 15.0 | 278925 | 3.4060 | 0.4049 | | 2.9106 | 16.0 | 297520 | 3.4084 | 0.4049 | | 2.8923 | 17.0 | 316115 | 3.4154 | 0.4055 | | 2.8795 | 18.0 | 334710 | 3.4195 | 0.4057 | | 2.8628 | 19.0 | 353305 | 3.4225 | 0.4057 | | 2.8497 | 20.0 | 371900 | 3.4264 | 0.4056 | ### Framework versions - Transformers 4.38.0 - Pytorch 2.3.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2