--- library_name: transformers tags: - generated_from_trainer datasets: - kanishka/babylm2-clean-spacy metrics: - accuracy model-index: - name: opt-babylm2-clean-spacy-32k-earlystop_seed-42_1e-3 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/babylm2-clean-spacy type: kanishka/babylm2-clean-spacy metrics: - name: Accuracy type: accuracy value: 0.43054403912594785 --- # opt-babylm2-clean-spacy-32k-earlystop_seed-42_1e-3 This model was trained from scratch on the kanishka/babylm2-clean-spacy dataset. It achieves the following results on the evaluation set: - Loss: 2.9103 - Accuracy: 0.4305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 5.9107 | 0.9995 | 1942 | 3.9887 | 0.3269 | | 3.7896 | 1.9996 | 3885 | 3.5236 | 0.3657 | | 3.3813 | 2.9997 | 5828 | 3.3040 | 0.3859 | | 3.174 | 3.9997 | 7771 | 3.1921 | 0.3962 | | 3.0533 | 4.9998 | 9714 | 3.1266 | 0.4026 | | 2.9768 | 5.9999 | 11657 | 3.0838 | 0.4071 | | 2.9232 | 6.9999 | 13600 | 3.0550 | 0.4101 | | 2.8863 | 8.0 | 15543 | 3.0363 | 0.4122 | | 2.8563 | 8.9995 | 17485 | 3.0208 | 0.4139 | | 2.8356 | 9.9996 | 19428 | 3.0117 | 0.4151 | | 2.816 | 10.9997 | 21371 | 3.0030 | 0.4162 | | 2.8069 | 11.9997 | 23314 | 2.9951 | 0.4170 | | 2.7941 | 12.9998 | 25257 | 2.9923 | 0.4175 | | 2.7889 | 13.9999 | 27200 | 2.9888 | 0.4182 | | 2.7802 | 14.9999 | 29143 | 2.9839 | 0.4186 | | 2.7802 | 16.0 | 31086 | 2.9821 | 0.4190 | | 2.7665 | 16.9995 | 33028 | 2.9626 | 0.4212 | | 2.6908 | 17.9996 | 34971 | 2.9378 | 0.4247 | | 2.6058 | 18.9997 | 36914 | 2.9145 | 0.4284 | | 2.505 | 19.9910 | 38840 | 2.9103 | 0.4305 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0