--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model-index: - name: tinyllama-1.1B_dolly-4.5k_lora results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: kareemamrr/databricks-dolly-4.5k type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/lora-out sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 16 lora_alpha: 16 lora_dropout: 0.5 lora_target_linear: true lora_fan_in_fan_out: # wandb_project: tinyllama-dolly-axolotl # wandb_entity: kamr54 hub_model_id: kareemamrr/tinyllama-1.1B_dolly-4.5k_lora gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: learning_rate: 0.0004 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# tinyllama-1.1B_dolly-4.5k_lora This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8146 | 0.0317 | 1 | 2.1074 | | 1.7728 | 0.2540 | 8 | 1.8290 | | 1.9975 | 0.5079 | 16 | 1.7875 | | 1.7685 | 0.7619 | 24 | 1.7717 | | 1.8368 | 1.0159 | 32 | 1.7684 | | 1.768 | 1.2460 | 40 | 1.7622 | | 1.7774 | 1.5 | 48 | 1.7655 | | 1.7727 | 1.7540 | 56 | 1.7565 | | 1.7453 | 2.0079 | 64 | 1.7502 | | 1.5904 | 2.2381 | 72 | 1.7644 | | 1.5978 | 2.4921 | 80 | 1.7628 | | 1.7305 | 2.7460 | 88 | 1.7600 | | 1.4956 | 3.0 | 96 | 1.7582 | | 1.503 | 3.2222 | 104 | 1.7603 | | 1.6659 | 3.4762 | 112 | 1.7634 | | 1.734 | 3.7302 | 120 | 1.7650 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1