--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model-index: - name: tinyllama-1.1B_dolly-3k_lora results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: kareemamrr/databricks-dolly-3k type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/lora-out sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: hub_model_id: kareemamrr/tinyllama-1.1B_dolly-3k_lora wandb_project: tinyllama-1.1B_dolly-3k wandb_entity: kamr54 wandb_name: lora gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# tinyllama-1.1B_dolly-3k_lora This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on a subset of the [Databricks Dolly dataset](https://huggingface.co/datasets/kareemamrr/databricks-dolly-3k). It achieves the following results on the evaluation set: - Loss: 1.7510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9375 | 0.0476 | 1 | 2.1187 | | 1.9297 | 0.2857 | 6 | 2.0186 | | 1.8257 | 0.5714 | 12 | 1.8111 | | 1.7285 | 0.8571 | 18 | 1.7862 | | 1.752 | 1.1071 | 24 | 1.7848 | | 1.8686 | 1.3929 | 30 | 1.7808 | | 1.6451 | 1.6786 | 36 | 1.7594 | | 1.7861 | 1.9643 | 42 | 1.7582 | | 1.6606 | 2.2024 | 48 | 1.7536 | | 1.6168 | 2.4881 | 54 | 1.7543 | | 1.7087 | 2.7738 | 60 | 1.7527 | | 1.7276 | 3.0119 | 66 | 1.7525 | | 1.8117 | 3.2976 | 72 | 1.7487 | | 1.6897 | 3.5833 | 78 | 1.7502 | | 1.7861 | 3.8690 | 84 | 1.7510 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1