---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model-index:
- name: tinyllama-1.1B_dolly-3k_lora
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: kareemamrr/databricks-dolly-3k
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
hub_model_id: kareemamrr/tinyllama-1.1B_dolly-3k_lora
wandb_project: tinyllama-1.1B_dolly-3k
wandb_entity: kamr54
wandb_name: lora
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# tinyllama-1.1B_dolly-3k_lora
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on a subset of the [Databricks Dolly dataset](https://huggingface.co/datasets/kareemamrr/databricks-dolly-3k).
It achieves the following results on the evaluation set:
- Loss: 1.7510
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9375 | 0.0476 | 1 | 2.1187 |
| 1.9297 | 0.2857 | 6 | 2.0186 |
| 1.8257 | 0.5714 | 12 | 1.8111 |
| 1.7285 | 0.8571 | 18 | 1.7862 |
| 1.752 | 1.1071 | 24 | 1.7848 |
| 1.8686 | 1.3929 | 30 | 1.7808 |
| 1.6451 | 1.6786 | 36 | 1.7594 |
| 1.7861 | 1.9643 | 42 | 1.7582 |
| 1.6606 | 2.2024 | 48 | 1.7536 |
| 1.6168 | 2.4881 | 54 | 1.7543 |
| 1.7087 | 2.7738 | 60 | 1.7527 |
| 1.7276 | 3.0119 | 66 | 1.7525 |
| 1.8117 | 3.2976 | 72 | 1.7487 |
| 1.6897 | 3.5833 | 78 | 1.7502 |
| 1.7861 | 3.8690 | 84 | 1.7510 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1