--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-jpn results: [] --- # speaker-segmentation-fine-tuned-callhome-jpn This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome jpn dataset. It achieves the following results on the evaluation set: - Loss: 0.7433 - Der: 0.2234 - False Alarm: 0.0478 - Missed Detection: 0.1328 - Confusion: 0.0428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.5771 | 1.0 | 328 | 0.7534 | 0.2321 | 0.0564 | 0.1261 | 0.0496 | | 0.5388 | 2.0 | 656 | 0.7503 | 0.2261 | 0.0485 | 0.1347 | 0.0429 | | 0.5061 | 3.0 | 984 | 0.7486 | 0.2248 | 0.0475 | 0.1350 | 0.0423 | | 0.4883 | 4.0 | 1312 | 0.7374 | 0.2227 | 0.0492 | 0.1315 | 0.0421 | | 0.493 | 5.0 | 1640 | 0.7433 | 0.2234 | 0.0478 | 0.1328 | 0.0428 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1