File size: 19,752 Bytes
305a42c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
#include "arg.h"
#include "chat.h"
#include "common.h"
#include "llama.h"
#include "log.h"

#include <limits.h>
#include <string>
#include <vector>
#include <algorithm>
#include <cmath>
#include <limits>
#include <random>

typedef bool (*diffusion_step_callback_t)(int32_t step,
                                          int32_t total_steps,
                                          const llama_token * tokens,
                                          int32_t n_tokens,
                                          void * user_data);

enum diffusion_alg {
    DIFFUSION_ALG_ORIGIN       = 0,
    DIFFUSION_ALG_MASKGIT_PLUS = 1,
    DIFFUSION_ALG_TOPK_MARGIN  = 2,
    DIFFUSION_ALG_ENTROPY      = 3,
};

struct diffusion_params {
    int32_t                   steps;
    float                     eps;
    float                     temperature;
    float                     top_p;
    int32_t                   top_k;
    llama_token               mask_token_id;
    enum diffusion_alg        algorithm;
    float                     alg_temp;
    diffusion_step_callback_t step_callback;
    void *                    step_callback_user_data;
    int32_t                   seed;
};


static diffusion_params diffusion_default_params() {
    diffusion_params params        = {};
    params.steps                   = 64;
    params.eps                     = 1e-3f;
    params.temperature             = 0.2f;
    params.top_p                   = 0.95f;
    params.top_k                   = 0;
    params.mask_token_id           = LLAMA_TOKEN_NULL;
    params.algorithm               = DIFFUSION_ALG_ORIGIN;
    params.alg_temp                = 0.0f;
    params.step_callback           = nullptr;
    params.step_callback_user_data = nullptr;
    params.seed                    = 0;
    return params;
}

static void diffusion_generate(llama_context * ctx,
                        const llama_token * input_tokens,
                        llama_token * output_tokens,
                        int32_t n_input,
                        int32_t max_length,
                        struct diffusion_params params,
                        int32_t & n_generated) {

    n_generated = 0;
    if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || max_length <= n_input) {
        return;
    }

    const llama_model * model = llama_get_model(ctx);

    // Initialize with input and pad with mask tokens
    std::copy(input_tokens, input_tokens + n_input, output_tokens);
    std::fill(output_tokens + n_input, output_tokens + max_length, params.mask_token_id);

    std::mt19937 rng(params.seed);

    std::vector<float> timesteps(params.steps + 1);
    for (int32_t i = 0; i <= params.steps; i++) {
        timesteps[i] = 1.0f - (float) i / params.steps * (1.0f - params.eps);
    }

    llama_set_causal_attn(ctx, false);

    int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));

    std::vector<llama_token_data> candidates(n_vocab);

    std::vector<llama_token_data> conf_candidates;
    conf_candidates.reserve(max_length);

    std::vector<int32_t> mask_positions;
    mask_positions.reserve(max_length);

    struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
    if (params.top_k > 0) {
        llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
    }
    if (params.top_p < 1.0f) {
        llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
    }
    if (params.temperature > 0.0f) {
        llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
    }
    llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));

    struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);

    llama_batch batch = llama_batch_init(max_length, 0, 1);
    batch.n_tokens    = max_length;

    int64_t total_sampling_time = 0;
    int64_t total_time = 0;

    int64_t time_start = ggml_time_us();
    for (int32_t step = 0; step < params.steps; step++) {
        if (params.step_callback) {
            if (!params.step_callback(step, params.steps, output_tokens, max_length, params.step_callback_user_data)) {
                break;
            }
        }

        for (int32_t i = 0; i < max_length; i++) {
            batch.token[i]     = output_tokens[i];
            batch.pos[i]       = i;
            batch.n_seq_id[i]  = 1;
            batch.seq_id[i][0] = 0;
            batch.logits[i]    = 1;
        }

        int ret = llama_decode(ctx, batch);
        if (ret != 0) {
            LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, step, ret);
            break;
        }

        float * raw_logits = llama_get_logits(ctx);
        if (!raw_logits) {
            LOG_ERR("%s: failed to get logits at step %d\n", __func__, step);
            break;
        }

        auto get_logits_for_pos = [&](int32_t pos) -> const float * {
            return pos == 0 ? raw_logits : raw_logits + (pos - 1) * n_vocab;
        };

        int64_t time_start_sampling = ggml_time_us();

        mask_positions.clear();
        for (int32_t i = 0; i < max_length; i++) {
            if (output_tokens[i] == params.mask_token_id) {
                mask_positions.push_back(i);
            }
        }

        if (mask_positions.empty()) {
            break;
        }

        float t = timesteps[step];
        float s = timesteps[step + 1];

        if (params.algorithm == DIFFUSION_ALG_ORIGIN) {
            float p_transfer = (step < params.steps - 1) ? (1.0f - s / t) : 1.0f;

            for (int32_t pos : mask_positions) {
                if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
                    const float * pos_logits = get_logits_for_pos(pos);
                    for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
                        candidates[token_id].id    = token_id;
                        candidates[token_id].logit = pos_logits[token_id];
                        candidates[token_id].p     = 0.0f;
                    }

                    llama_token_data_array cur_p = {
                        /* .data       = */ candidates.data(),
                        /* .size       = */ (size_t) n_vocab,  // Reset size to full vocab
                        /* .selected   = */ -1,
                        /* .sorted     = */ false,
                    };

                    llama_sampler_apply(sampler, &cur_p);
                    output_tokens[pos] = cur_p.data[cur_p.selected].id;
                }
            }
        } else {
            std::vector<std::pair<float, int32_t>> confidences;
            std::vector<llama_token>               sampled_tokens(mask_positions.size());

            for (size_t i = 0; i < mask_positions.size(); i++) {
                int32_t       pos        = mask_positions[i];
                const float * pos_logits = get_logits_for_pos(pos);

                for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
                    candidates[token_id].logit = pos_logits[token_id];
                    candidates[token_id].p     = 0.0f;
                    candidates[token_id].id    = token_id;
                }

                llama_token_data_array cur_p = {
                    /* .data       = */ candidates.data(),
                    /* .size       = */ candidates.size(),
                    /* .selected   = */ -1,
                    /* .sorted     = */ false,
                };

                llama_sampler_apply(sampler, &cur_p);

                llama_token sampled_token = cur_p.data[cur_p.selected].id;

                float confidence = 0.0f;
                if (params.algorithm == DIFFUSION_ALG_ENTROPY) {
                    const float epsilon = 1e-10f;
                    for (size_t j = 0; j < cur_p.size; j++) {
                        float prob = cur_p.data[j].p;
                        confidence += prob * logf(prob + epsilon);
                    }
                } else if (params.algorithm == DIFFUSION_ALG_TOPK_MARGIN) {
                    confidence = cur_p.data[0].p - cur_p.data[1].p;
                } else {
                    confidence = cur_p.data[cur_p.selected].p;
                }

                sampled_tokens[i] = sampled_token;
                confidences.emplace_back(confidence, i);
            }

            int32_t num_transfer =
                (step < params.steps - 1) ? (int32_t) (mask_positions.size() * (1.0f - s / t)) : mask_positions.size();

            if (num_transfer > 0) {
                if (params.alg_temp == 0.0f) {
                    std::partial_sort(confidences.begin(), confidences.begin() + num_transfer, confidences.end(),
                                      [](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
                                          if (a.first != b.first) {
                                              return a.first > b.first;
                                          }
                                          return a.second < b.second;
                                      });
                } else {
                    conf_candidates.clear();

                    for (int32_t pos = 0; pos < max_length; pos++) {
                        float conf_logit = -std::numeric_limits<float>::infinity();

                        auto it = std::find(mask_positions.begin(), mask_positions.end(), pos);
                        if (it != mask_positions.end()) {
                            size_t mask_idx = std::distance(mask_positions.begin(), it);
                            conf_logit = confidences[mask_idx].first / params.alg_temp;  // Apply temperature scaling
                        }

                        conf_candidates.emplace_back(llama_token_data{ pos, conf_logit, 0.0f });
                    }

                    llama_token_data_array conf_array = {
                        /* .data       = */ conf_candidates.data(),
                        /* .size       = */ conf_candidates.size(),
                        /* .selected   = */ -1,
                        /* .sorted     = */ false,
                    };

                    for (int32_t i = 0; i < num_transfer; i++) {
                        // Apply distribution sampler to get selected index
                        llama_sampler_apply(dist_sampler, &conf_array);
                        int selected_idx      = conf_array.selected;
                        confidences[i].second = conf_candidates[selected_idx].id;

                        conf_candidates[selected_idx].p = 0.0f;
                        conf_array.selected             = -1;
                    }
                }

                if (params.alg_temp == 0.0f) {
                    // Deterministic - use confidence order
                    for (int32_t i = 0; i < num_transfer; i++) {
                        int32_t     mask_idx = confidences[i].second;
                        int32_t     pos      = mask_positions[mask_idx];
                        llama_token token    = sampled_tokens[mask_idx];
                        output_tokens[pos]   = token;
                    }
                } else {
                    for (int32_t i = 0; i < num_transfer; i++) {
                        int32_t pos = confidences[i].second;
                        auto    it  = std::find(mask_positions.begin(), mask_positions.end(), pos);
                        if (it != mask_positions.end()) {
                            int32_t mask_idx   = std::distance(mask_positions.begin(), it);
                            output_tokens[pos] = sampled_tokens[mask_idx];
                        }
                    }
                }
            }
        }
        int64_t time_end_sampling = ggml_time_us();
        total_sampling_time += time_end_sampling - time_start_sampling;
    }
    int64_t time_end = ggml_time_us();
    total_time += time_end - time_start;

    LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
            total_time / 1000.0, total_time / 1000.0 / params.steps, total_sampling_time / 1000.0 / params.steps);


    llama_batch_free(batch);
    llama_sampler_free(sampler);
    llama_sampler_free(dist_sampler);

    n_generated = max_length;
}




static std::string format_input_text(const std::string & prompt, bool use_chat_template, llama_model * model) {
    if (!use_chat_template) {
        return prompt;
    }

    auto chat_templates = common_chat_templates_init(model, "");

    common_chat_templates_inputs inputs;
    common_chat_msg              user_msg;
    user_msg.role                = "user";
    user_msg.content             = prompt;
    inputs.add_generation_prompt = true;
    inputs.messages.push_back(user_msg);

    auto result = common_chat_templates_apply(chat_templates.get(), inputs);

    return result.prompt;
}

struct callback_data {
    const common_params_diffusion * diff_params;
    const llama_vocab *             vocab;
    int32_t                         n_input;
};

static bool diffusion_step_callback(int32_t step,
                                    int32_t total_steps,
                                    const llama_token * tokens,
                                    int32_t n_tokens,
                                    void * user_data) {
    (void)user_data;

    callback_data * data = static_cast<callback_data *>(user_data);

    auto print_progress_bar = [](int32_t step, int32_t total_steps) {
        int progress_percent = (step * 100) / total_steps;
        int progress_bars    = (step * 50) / total_steps;
        LOG_INF("\rdiffusion step: %d/%d [%s%s] %d%%",
            step,
            total_steps,
            std::string(progress_bars, '=').c_str(),
            std::string(50 - progress_bars, ' ').c_str(),
            progress_percent);
    };

    if (data->diff_params->visual_mode) {
        // Visual mode: clear
        LOG_INF("\033[2J\033[H");  // Clear screen and move cursor to top-left

        print_progress_bar(step, total_steps);

        LOG_INF("\n");

        std::string current_text = " ";

        for (int32_t i = data->n_input; i < n_tokens; i++) {
            std::string token_str;
            if (tokens[i] != llama_vocab_mask(data->vocab)) {
                char piece[256];
                int  n_chars = llama_token_to_piece(data->vocab, tokens[i], piece, sizeof(piece), 0, false);
                if (n_chars > 0) {
                    piece[n_chars] = '\0';
                    token_str      = piece;
                }
            } else {
                token_str = " ";
            }

            current_text += token_str;
        }

        LOG_INF("%s\n", current_text.c_str());
    } else {
        print_progress_bar(step, total_steps);
    }

    return true;
}

int main(int argc, char ** argv) {
    ggml_time_init();

    common_params params;

    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_DIFFUSION)) {
        return 1;
    }

    const char * alg_names[] = { "ORIGIN", "MASKGIT_PLUS", "TOPK_MARGIN", "ENTROPY" };
    const char * alg_name    = (params.diffusion.algorithm >= 0 && params.diffusion.algorithm <= 3) ?
                                   alg_names[params.diffusion.algorithm] :
                                   "UNKNOWN";

    common_init();
    llama_backend_init();

    llama_model_params model_params = llama_model_default_params();
    model_params.n_gpu_layers       = params.n_gpu_layers;
    model_params.devices            = params.devices.data();
    model_params.use_mmap           = params.use_mmap;
    model_params.use_mlock          = params.use_mlock;
    model_params.check_tensors      = params.check_tensors;

    llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
    if (!model) {
        LOG_ERR("error: failed to load model '%s'\n", params.model.path.c_str());
        return 1;
    }

    llama_context_params ctx_params = llama_context_default_params();
    ctx_params.n_ctx                = params.n_ctx;
    ctx_params.n_batch              = params.n_batch;
    ctx_params.n_ubatch             = params.n_ubatch;
    ctx_params.flash_attn           = params.flash_attn;
    ctx_params.no_perf              = params.no_perf;
    ctx_params.type_k               = params.cache_type_k;
    ctx_params.type_v               = params.cache_type_v;

    llama_context * ctx = llama_init_from_model(model, ctx_params);
    if (!ctx) {
        LOG_ERR("error: failed to create context\n");
        llama_model_free(model);
        return 1;
    }

    llama_set_n_threads(ctx, params.cpuparams.n_threads, params.cpuparams_batch.n_threads);

    const llama_vocab * vocab            = llama_model_get_vocab(model);
    std::string         formatted_prompt = format_input_text(params.prompt, params.enable_chat_template, model);

    std::vector<llama_token> input_tokens = common_tokenize(vocab, formatted_prompt,
                                                            /*add special tokens*/ true,
                                                            /*parse special*/ true);
    int                      n_input      = input_tokens.size();

    if (n_input >= params.n_ctx) {
        LOG_ERR("error: input too long (%d tokens), max context is %d\n", n_input, params.n_ctx);
        llama_free(ctx);
        llama_model_free(model);
        return 1;
    }

    struct diffusion_params ldiff_params = diffusion_default_params();
    ldiff_params.steps                   = params.diffusion.steps;
    ldiff_params.eps                     = params.diffusion.eps;
    ldiff_params.temperature             = params.sampling.temp;
    ldiff_params.top_p                   = params.sampling.top_p;
    ldiff_params.top_k                   = params.sampling.top_k;
    ldiff_params.algorithm               = static_cast<enum diffusion_alg>(params.diffusion.algorithm);
    ldiff_params.alg_temp                = params.diffusion.alg_temp;
    ldiff_params.seed                    = params.sampling.seed;

    llama_token mask_token_id = llama_vocab_mask(vocab);
    GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL);

    LOG_INF("diffusion_params: - %-25s llama_token      = %d\n", "mask_token_id", mask_token_id);
    LOG_INF("diffusion_params: - %-25s u32              = %d\n", "steps", params.diffusion.steps);
    LOG_INF("diffusion_params: - %-25s f32              = %.6f\n", "eps", params.diffusion.eps);
    LOG_INF("diffusion_params: - %-25s u32              = %d (%s)\n", "algorithm", params.diffusion.algorithm,
            alg_name);
    LOG_INF("diffusion_params: - %-25s f32              = %.3f\n", "alg_temp", params.diffusion.alg_temp);

    ldiff_params.mask_token_id = mask_token_id;

    callback_data cb_data = { &params.diffusion, vocab, n_input };

    ldiff_params.step_callback           = diffusion_step_callback;
    ldiff_params.step_callback_user_data = &cb_data;

    int32_t n_generated = 0;

    std::vector<llama_token> output_tokens(params.n_ubatch);
    diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, params.n_ubatch,
                       ldiff_params, n_generated);

    if (n_generated > 0) {
        if (params.diffusion.visual_mode) {
            //clear screen and move cursor to top-left
            LOG_INF("\033[2J\033[H");
        }
        output_tokens.erase(output_tokens.begin(), output_tokens.begin() + n_input);
        std::string output_data = common_detokenize(vocab, output_tokens, false);
        LOG_INF("\n%s\n", output_data.c_str());
    } else {
        LOG_INF("Error: diffusion generation failed\n");
    }

    llama_free(ctx);
    llama_model_free(model);
    llama_backend_free();

    return 0;
}