headline_detector / README.md
kaenova's picture
Update README.md
987d07d
metadata
language:
  - id

headline_detector

Open in Spaces

Indonesian Headline Detection Model Repository

There's a Python library that provides APIs for detecting headlines in textual data, especially on social media platforms such as Twitter. The library utilizes a model that has been developed and trained on a dataset of Twitter posts containing both headline and non-headline texts, with the assistance of journalism professionals to ensure the data quality.

$ pip install headline-detector

Available scenario and the performance

Model Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
Fasttext 0.8766 0.8714 0.8793 0.8714 0.8714 0.8661
CNN 0.9081 0.9081 0.8950 0.8898 0.8950 0.8898
IndoBERTweet 0.9895 0.9921 0.9738 0.9580 0.9843 0.9685

All meassured in accuracy

Model Throughput

Model Throughput (± Text/seconds)
IndoBERTweet ±1.3
CNN ±281.60
Fasttext ±2048.41

Tested on Intel i7-6700k and 32GB of RAM.

Usage

Output either 0 (non-headline) and 1 (headline)

from headline_detector import FasttextDetector, IndoBERTweetDetector, CNNDetector

detector = FasttextDetector.load_from_scenario(1)
data = detector.predict_text(
    [
        "nama kamu siapa?",
        "Kapolda Jatim Teddy Minahasa Dikabarkan Ditangkap Terkait Narkoba  https://t.co/LD9X6VFaUR",
    ]
)
print(data)  # output: [0, 1]

detector = CNNDetector.load_from_scenario(3)
data = detector.predict_text(
    [
        "nama kamu siapa?",
        "Kapolda Jatim Teddy Minahasa Dikabarkan Ditangkap Terkait Narkoba  https://t.co/LD9X6VFaUR",
    ]
)
print(data)  # output: [0, 1]

detector = IndoBERTweetDetector.load_from_scenario(5)
data = detector.predict_text(
    [
        "nama kamu siapa?",
        "Kapolda Jatim Teddy Minahasa Dikabarkan Ditangkap Terkait Narkoba  https://t.co/LD9X6VFaUR",
    ]
)
print(data)  # output: [0, 1]

# 0 is non-headline
# 1 is headline