--- license: apache-2.0 tags: - object-detection - computer-vision - yolox - yolov3 - yolov5 datasets: - detection-datasets/coco --- ### Model Description [YOLOX](https://arxiv.org/abs/2107.08430) is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. [YOLOXDetect-Pip](https://github.com/kadirnar/yolox-pip/): This repo is a packaged version of the [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX) for easy installation and use. [Paper Repo]: Implementation of paper - [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX) ### Installation ``` pip install yoloxdetect ``` ### Yolox Inference ```python from yoloxdetect import YoloxDetector from yolox.data.datasets import COCO_CLASSES model = YoloxDetector( model_path = "kadirnar/yolox_nano-v0.1.1", config_path = "configs.yolox_s", device = "cuda:0", ) model.classes = COCO_CLASSES model.conf = 0.25 model.iou = 0.45 model.show = False model.save = True pred = model.predict(image='data/images', img_size=640) ``` ### BibTeX Entry and Citation Info ``` @article{yolox2021, title={YOLOX: Exceeding YOLO Series in 2021}, author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian}, journal={arXiv preprint arXiv:2107.08430}, year={2021} } ```