--- license: gpl-3.0 tags: - object-detection - computer-vision - yolor - yolov4 datasets: - detection-datasets/coco language: - en pipeline_tag: object-detection library_name: yolor library_version: 0.0.3 --- ### Model Description [YOLOR:](https://arxiv.org/abs/2105.04206) You Only Learn One Representation: Unified Network for Multiple Tasks. [YOLOR-Pip:](https://github.com/kadirnar/yolor-pip/) Packaged version of the YOLOR repository [Paper Repo:](https://github.com/WongKinYiu/yolor/) Implementation of paper - YOLOR ### Installation ``` pip install yolor ``` ### Yolov6 Inference ```python from yolor.helpers import Yolor model = Yolor( cfg='yolor/cfg/yolor_w6.cfg', weights='kadirnar/yolor-w6', imgsz=640, device='cuda:0' ) model.classes = None model.conf = 0.25 model.iou_ = 0.45 model.show = False model.save = True model.predict('yolor/data/highway.jpg') ``` ### BibTeX Entry and Citation Info ``` @article{wang2021you, title={You Only Learn One Representation: Unified Network for Multiple Tasks}, author={Wang, Chien-Yao and Yeh, I-Hau and Liao, Hong-Yuan Mark}, journal={arXiv preprint arXiv:2105.04206}, year={2021} } ```