--- co2_eq_emissions: 0.021794705501614994 datasets: - justpyschitry/autotrain-data-Psychiatry_Article_Identifier language: unk tags: "autotrain, psychiatry, ICD-11" widget: - text: "I love AutoTrain 🤗" # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 990132820 - CO2 Emissions (in grams): 0.021794705501614994 ## Validation Metrics - Loss: 0.3959168493747711 - Accuracy: 0.9141004862236629 - Macro F1: 0.8984327823035179 - Micro F1: 0.9141004862236629 - Weighted F1: 0.913962331636746 - Macro Precision: 0.9087151885944185 - Micro Precision: 0.9141004862236629 - Weighted Precision: 0.9154123644574501 - Macro Recall: 0.8957596627132517 - Micro Recall: 0.9141004862236629 - Weighted Recall: 0.9141004862236629 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/justpyschitry/autotrain-Psychiatry_Article_Identifier-990132820 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("justpyschitry/autotrain-Psychiatry_Article_Identifier-990132820", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("justpyschitry/autotrain-Psychiatry_Article_Identifier-990132820", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ``` ## Copyrights (C) Justpsychiatry. CCBY 4.0 International. https://creativecommons.org/licenses/by/4.0/