# Original training architecture (verbatim) import math import torch import torch.nn as nn import torch.nn.functional as F from torch import _softmax_backward_data as _softmax_backward_data class Bert(nn.Module): def __init__(self, config, activation_checkpointing=False): super().__init__() self.embedding = Embedding(config) self.transformer = Encoder(config, activation_checkpointing) self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) def get_contextualized(self, input_ids, attention_mask): static_embeddings, relative_embedding = self.embedding(input_ids) contextualized_embeddings = self.transformer(static_embeddings, attention_mask.unsqueeze(1), relative_embedding) return contextualized_embeddings def forward(self, input_ids, attention_mask, masked_lm_labels, num_masked=None, ratio=None): contextualized_embeddings = self.get_contextualized(input_ids, attention_mask) if num_masked is None: subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked) gold_labels = masked_lm_labels.flatten() gold_labels = gold_labels[gold_labels != -100] loss = F.cross_entropy(subword_prediction, gold_labels, reduction="none").mean() z_loss = torch.logsumexp(subword_prediction, dim=-1).pow(2).mean() with torch.no_grad(): accuracy = (subword_prediction.argmax(-1) == gold_labels).float().mean() num_tokens = gold_labels.size(0) return loss, accuracy, z_loss, num_tokens else: masked_subword_prediction, causal_subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked) if masked_subword_prediction is not None: masked_gold_labels = masked_lm_labels[:, :num_masked].flatten() masked_gold_labels = masked_gold_labels[masked_gold_labels != -100] masked_loss = F.cross_entropy(masked_subword_prediction, masked_gold_labels) masked_z_loss = torch.logsumexp(masked_subword_prediction, dim=-1).pow(2).mean() with torch.no_grad(): masked_accuracy = (masked_subword_prediction.argmax(-1) == masked_gold_labels).float().mean() num_masked_tokens = masked_gold_labels.size(0) else: masked_loss = 0.0 masked_z_loss = 0.0 masked_accuracy = 0.0 num_masked_tokens = 0 if causal_subword_prediction is not None: causal_gold_labels = masked_lm_labels[:, num_masked:].flatten() causal_gold_labels = causal_gold_labels[causal_gold_labels != -100] causal_loss = F.cross_entropy(causal_subword_prediction, causal_gold_labels) causal_z_loss = torch.logsumexp(causal_subword_prediction, dim=-1).pow(2).mean() with torch.no_grad(): causal_accuracy = (causal_subword_prediction.argmax(-1) == causal_gold_labels).float().mean() num_causal_tokens = causal_gold_labels.size(0) else: causal_loss = 0.0 causal_z_loss = 0.0 causal_accuracy = 0.0 num_causal_tokens = 0 loss = ratio * masked_loss + (1 - ratio) * causal_loss z_loss = ratio * masked_z_loss + (1 - ratio) * causal_z_loss with torch.no_grad(): accuracy = ratio * masked_accuracy + (1 - ratio) * causal_accuracy num_tokens = num_masked_tokens + num_causal_tokens return loss, masked_loss, causal_loss, accuracy, masked_accuracy, causal_accuracy, z_loss, num_tokens # From https://github.com/epfml/DenseFormer class InPlaceSetSlice(torch.autograd.Function): @staticmethod def forward(ctx, full_tensor, last_slice, x_idx, x_val): full_tensor[x_idx] = x_val ctx.x_idx = x_idx ret = torch.Tensor().to(full_tensor.device) ret.set_(full_tensor[:x_idx + 1]) return ret @staticmethod def backward(ctx, grad_out): if ctx.x_idx == 0: return None, None, None, grad_out[ctx.x_idx] else: return None, grad_out[:ctx.x_idx], None, grad_out[ctx.x_idx] def apply_inplace_set(x_acc, x_idx, x_val): full_tensor, last_slice = x_acc new_slice = InPlaceSetSlice.apply(full_tensor, last_slice, x_idx, x_val) return full_tensor, new_slice class DWAModules(torch.nn.Module): def __init__(self, hidden_size, n_blocks): super().__init__() self.n_blocks = n_blocks self.alphas = nn.ParameterList([nn.Parameter(torch.zeros(i + 2)) for i in range(n_blocks)]) self.accumulator = None self._init_weights() def _init_weights(self): for module in self.alphas: module.data.zero_() module.data[-1] = 1.0 def init_accumulator(self, x): self.accumulator = (torch.zeros((self.n_blocks + 1, *x.shape), device=x.device, dtype=x.dtype), None) self.accumulator = apply_inplace_set(self.accumulator, 0, x) def forward(self, x, block_idx): assert self.accumulator is not None, "`init_accumulator(x)` needs to be called first" self.accumulator = apply_inplace_set( self.accumulator, block_idx + 1, x ) x = torch.tensordot(self.alphas[block_idx], self.accumulator[1], dims=1) return x class Encoder(nn.Module): def __init__(self, config, activation_checkpointing=False): super().__init__() self.attention_layers = nn.ModuleList([Attention(config) for _ in range(config.num_hidden_layers)]) self.mlp_layers = nn.ModuleList([FeedForward(config) for _ in range(config.num_hidden_layers)]) self.dwa_modules = DWAModules(config.hidden_size, config.num_hidden_layers * 2) for i, layer in enumerate(self.mlp_layers): layer.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) layer.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) self.activation_checkpointing = activation_checkpointing def forward(self, x, attention_mask, relative_embedding): self.dwa_modules.init_accumulator(x) for i, (attention_layer, mlp_layer) in enumerate(zip(self.attention_layers, self.mlp_layers)): x = x + attention_layer(x, attention_mask, relative_embedding) x = self.dwa_modules(x, block_idx=i * 2) x = x + mlp_layer(x) x = self.dwa_modules(x, block_idx=i * 2 + 1) return x class MaskClassifier(nn.Module): def __init__(self, config, subword_embedding): super().__init__() self.nonlinearity = nn.Sequential( nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False), nn.Linear(config.hidden_size, config.hidden_size), nn.GELU(), nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False), nn.Dropout(config.hidden_dropout_prob), nn.Linear(subword_embedding.size(1), subword_embedding.size(0)) ) self.initialize(config.hidden_size, subword_embedding) def initialize(self, hidden_size, embedding): std = math.sqrt(2.0 / (5.0 * hidden_size)) nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std) self.nonlinearity[-1].weight = embedding self.nonlinearity[1].bias.data.zero_() self.nonlinearity[-1].bias.data.zero_() def forward(self, x, masked_lm_labels, num_masked=None): if num_masked is None: x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze()) x = self.nonlinearity(x) return x else: masked_x, causal_x = torch.tensor_split(x, (num_masked,), dim=1) mntp_masked_lm_labels, causal_masked_lm_labels = torch.tensor_split(masked_lm_labels, (num_masked,), dim=1) if masked_x.size(1) != 0: masked_x = torch.index_select(masked_x.flatten(0, 1), 0, torch.nonzero(mntp_masked_lm_labels.flatten() != -100).squeeze()) masked_x = self.nonlinearity(masked_x) else: masked_x = None if causal_x.size(1) != 0: causal_x = torch.index_select(causal_x.flatten(0, 1), 0, torch.nonzero(causal_masked_lm_labels.flatten() != -100).squeeze()) causal_x = self.nonlinearity(causal_x) else: causal_x = None return masked_x, causal_x class GeGLU(nn.Module): def forward(self, x): x, gate = x.chunk(2, dim=-1) x = x * F.gelu(gate, approximate='tanh') return x class FeedForward(nn.Module): def __init__(self, config): super().__init__() self.mlp = nn.Sequential( nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False), nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False), GeGLU(), nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False), nn.Linear(config.intermediate_size, config.hidden_size, bias=False), nn.Dropout(config.hidden_dropout_prob) ) self.initialize(config.hidden_size) def initialize(self, hidden_size): std = math.sqrt(2.0 / (5.0 * hidden_size)) nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std) nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std) def forward(self, x): return self.mlp(x) class MaskedSoftmax(torch.autograd.Function): @staticmethod def forward(self, x, mask, dim): self.dim = dim x.masked_fill_(mask, float('-inf')) x = torch.softmax(x, self.dim) x.masked_fill_(mask, 0.0) self.save_for_backward(x) return x @staticmethod def backward(self, grad_output): output, = self.saved_tensors inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype) return inputGrad, None, None class Attention(nn.Module): def __init__(self, config): super().__init__() self.config = config if config.hidden_size % config.num_attention_heads != 0: raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}") self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_size = config.hidden_size // config.num_attention_heads self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True) self.in_proj_vg = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True) self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True) self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False) self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False) position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \ - torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0) position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings) position_indices = config.position_bucket_size - 1 + position_indices self.register_buffer("position_indices", position_indices, persistent=True) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.scale = 1.0 / math.sqrt(3 * self.head_size) self.initialize() def make_log_bucket_position(self, relative_pos, bucket_size, max_position): sign = torch.sign(relative_pos) mid = bucket_size // 2 abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1)) log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long() return bucket_pos def initialize(self): std = math.sqrt(2.0 / (5.0 * self.hidden_size)) nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std) nn.init.trunc_normal_(self.in_proj_vg.weight, mean=0.0, std=std, a=-2*std, b=2*std) nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std) self.in_proj_qk.bias.data.zero_() self.in_proj_vg.bias.data.zero_() self.out_proj.bias.data.zero_() def forward(self, hidden_states, attention_mask, relative_embedding): key_len, batch_size, _ = hidden_states.size() query_len = key_len if self.position_indices.size(0) < query_len: position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \ - torch.arange(query_len, dtype=torch.long).unsqueeze(0) position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512) position_indices = self.config.position_bucket_size - 1 + position_indices self.register_buffer("position_indices", position_indices.to(hidden_states.device), persistent=True) hidden_states = self.pre_layer_norm(hidden_states) query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D] value, gate = self.in_proj_vg(hidden_states).chunk(2, dim=2) # shape: [T, B, D] gate = F.gelu(gate) pos = self.in_proj_qk(self.dropout(relative_embedding)) # shape: [2T-1, 2D] pos = F.embedding(self.position_indices[:query_len, :key_len], pos) # shape: [T, T, 2D] query_pos, key_pos = pos.chunk(2, dim=-1) query_pos = query_pos.view(query_len, key_len, self.num_heads, self.head_size) key_pos = key_pos.view(query_len, key_len, self.num_heads, self.head_size) query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) value = value.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale) query = query.view(batch_size, self.num_heads, query_len, self.head_size) key = key.view(batch_size, self.num_heads, query_len, self.head_size) attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len) attention_scores.add_(torch.einsum("bhqd,qkhd->bhqk", query, key_pos * self.scale)) attention_scores.add_(torch.einsum("bhkd,qkhd->bhqk", key * self.scale, query_pos)) attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1) attention_probs = self.dropout(attention_probs) context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D] context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D] context = context * gate context = self.post_layer_norm(context) context = self.out_proj(context) context = self.dropout(context) return context class Embedding(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size) self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size)) self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.initialize() def initialize(self): std = math.sqrt(2.0 / (5.0 * self.hidden_size)) nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std) nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std) def forward(self, input_ids): word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids))) relative_embeddings = self.relative_layer_norm(self.relative_embedding) return word_embedding, relative_embeddings # HF wrappers that preserve state dict keys and behavior from transformers import PreTrainedModel from transformers.modeling_outputs import MaskedLMOutput, CausalLMOutputWithCrossAttentions, SequenceClassifierOutput from .configuration_gpt_bert import GPTBertConfig import torch import torch.nn as nn DEFAULT_FORCE_CAUSAL_MASK = True EMIT_HIDDEN_STATES_DEFAULT = True def _normalize_mask_tensor(mask): if mask.dtype == torch.bool: if mask.numel() == 0: return mask true_fraction = mask.float().mean().item() if true_fraction > 0.5: mask = ~mask else: mask = mask <= 0 return mask.to(torch.bool) def _ensure_valid_rows(mask): row_masked = mask.all(dim=-1) if row_masked.any(): idx = row_masked.nonzero(as_tuple=False) mask[idx[:, 0], idx[:, 1], idx[:, 1]] = False return mask def _build_future_causal_mask(batch_size, seq_len, device): base = torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device), diagonal=1) return base.unsqueeze(0).expand(batch_size, -1, -1) def _build_babylm_attention_mask(input_ids, attention_mask, force_causal=False): batch_size, seq_len = input_ids.shape[:2] device = input_ids.device if attention_mask is None: mask = torch.zeros(batch_size, seq_len, seq_len, dtype=torch.bool, device=device) else: mask = attention_mask if mask.dim() == 0: mask = mask.unsqueeze(0) if mask.dim() == 1: mask = mask.unsqueeze(0) if mask.dim() == 2: mask = _normalize_mask_tensor(mask) mask = mask.unsqueeze(1) | mask.unsqueeze(2) elif mask.dim() == 3: if mask.size(1) == 1 and mask.size(2) == seq_len: mask = _normalize_mask_tensor(mask.squeeze(1)) mask = mask.unsqueeze(1) | mask.unsqueeze(2) elif mask.size(1) == seq_len and mask.size(2) == 1: mask = _normalize_mask_tensor(mask.squeeze(2)) mask = mask.unsqueeze(1) | mask.unsqueeze(2) else: mask = _normalize_mask_tensor(mask) elif mask.dim() == 4: if mask.size(1) == 1: mask = mask[:, 0] else: mask = mask.any(dim=1) mask = _normalize_mask_tensor(mask) else: raise ValueError("Unsupported attention_mask dimensions: {}".format(mask.dim())) mask = mask.to(device=device, dtype=torch.bool) if mask.dim() == 2: mask = mask.unsqueeze(1) | mask.unsqueeze(2) if mask.dim() != 3: raise ValueError("attention_mask must broadcast to a square matrix") if mask.size(0) == 1 and batch_size > 1: mask = mask.expand(batch_size, -1, -1).clone() elif mask.size(0) != batch_size: raise ValueError("attention_mask batch dimension {} does not match inputs {}".format(mask.size(0), batch_size)) rows = min(mask.size(1), seq_len) cols = min(mask.size(2), seq_len) if mask.size(1) != seq_len or mask.size(2) != seq_len: new_mask = torch.ones(batch_size, seq_len, seq_len, dtype=torch.bool, device=device) new_mask[:, :rows, :cols] = mask[:, :rows, :cols] mask = new_mask if force_causal: future_mask = _build_future_causal_mask(mask.size(0), seq_len, device) mask = mask | future_mask mask = _ensure_valid_rows(mask) return mask.unsqueeze(1) class GPTBertForMaskedLM(PreTrainedModel): config_class = GPTBertConfig base_model_prefix = 'gpt_bert' def __init__(self, config: GPTBertConfig): super().__init__(config) self.model = Bert(config) self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK) def tie_weights(self): try: self.model.classifier.nonlinearity[-1].weight = self.model.embedding.word_embedding.weight except Exception: pass return super().tie_weights() def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None): output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT) return_dict = return_dict if return_dict is not None else self.config.use_return_dict mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask) static_embeddings, relative_embedding = self.model.embedding(input_ids) if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]: static_embeddings = static_embeddings.transpose(0, 1) contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding) hs = contextualized.transpose(0, 1) B, S, H = hs.shape flat = hs.reshape(B * S, H) logits_flat = self.model.classifier.nonlinearity(flat) vocab = logits_flat.size(-1) logits = logits_flat.view(B, S, vocab) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss(ignore_index=-100) loss = loss_fct(logits.view(-1, vocab), labels.view(-1)) hidden_states = (hs,) if output_hidden_states else None if not return_dict: outputs = (logits,) if hidden_states is not None: outputs = outputs + (hidden_states,) return ((loss,) + outputs) if loss is not None else outputs return MaskedLMOutput(loss=loss, logits=logits, hidden_states=hidden_states) class GPTBertForCausalLM(PreTrainedModel): config_class = GPTBertConfig base_model_prefix = 'gpt_bert' def __init__(self, config: GPTBertConfig): super().__init__(config) self.model = Bert(config) self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK) def prepare_inputs_for_generation(self, input_ids, **kwargs): return {'input_ids': input_ids, 'attention_mask': kwargs.get('attention_mask', None)} def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None): output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT) return_dict = return_dict if return_dict is not None else self.config.use_return_dict mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask) static_embeddings, relative_embedding = self.model.embedding(input_ids) if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]: static_embeddings = static_embeddings.transpose(0, 1) contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding) hs = contextualized.transpose(0, 1) B, S, H = hs.shape flat = hs.reshape(B * S, H) logits_flat = self.model.classifier.nonlinearity(flat) vocab = logits_flat.size(-1) logits = logits_flat.view(B, S, vocab) loss = None if labels is not None: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = nn.CrossEntropyLoss(ignore_index=-100) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) hidden_states = (hs,) if output_hidden_states else None if not return_dict: outputs = (logits,) if hidden_states is not None: outputs = outputs + (hidden_states,) return ((loss,) + outputs) if loss is not None else outputs return CausalLMOutputWithCrossAttentions(loss=loss, logits=logits, hidden_states=hidden_states) class ClassifierHead(nn.Module): def __init__(self, config): super().__init__() self.nonlinearity = nn.Sequential( nn.LayerNorm(config.hidden_size, config.classifier_layer_norm_eps, elementwise_affine=False), nn.Linear(config.hidden_size, config.hidden_size), nn.GELU(), nn.LayerNorm(config.hidden_size, config.classifier_layer_norm_eps, elementwise_affine=False), nn.Dropout(config.classifier_dropout), nn.Linear(config.hidden_size, config.num_labels) ) def forward(self, embeddings): return self.nonlinearity(embeddings) class GPTBertForSequenceClassification(PreTrainedModel): config_class = GPTBertConfig base_model_prefix = 'gpt_bert' def __init__(self, config: GPTBertConfig): super().__init__(config) self.model = Bert(config) self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK) self.sequence_classifier = ClassifierHead(config) def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None): output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT) return_dict = return_dict if return_dict is not None else self.config.use_return_dict mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask) static_embeddings, relative_embedding = self.model.embedding(input_ids) if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]: static_embeddings = static_embeddings.transpose(0, 1) contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding) hs = contextualized.transpose(0, 1) pooled_output = hs[:, 0, :] logits = self.sequence_classifier(pooled_output) loss = None if labels is not None: labels = labels.to(logits.device) problem_type = self.config.problem_type if problem_type is None: if self.config.num_labels == 1: problem_type = "regression" elif labels.dtype in (torch.long, torch.int): problem_type = "single_label_classification" else: problem_type = "multilabel_classification" if problem_type == "regression": logits = logits.squeeze(-1) loss_fct = nn.MSELoss() loss = loss_fct(logits, labels.float()) elif problem_type == "single_label_classification": loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) else: loss_fct = nn.BCEWithLogitsLoss() loss = loss_fct(logits, labels.float()) hidden_states = (hs,) if output_hidden_states else None if not return_dict: outputs = (logits,) if hidden_states is not None: outputs = outputs + (hidden_states,) return ((loss,) + outputs) if loss is not None else outputs return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=hidden_states)