--- license: mit base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: MatSciBERT_BIOMAT_NER3 results: [] --- # MatSciBERT_BIOMAT_NER3 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3972 - Precision: 0.5228 - Recall: 0.7391 - F1: 0.6124 - Accuracy: 0.9437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 422 | 0.2590 | 0.4873 | 0.6950 | 0.5729 | 0.9387 | | 0.2326 | 2.0 | 844 | 0.2598 | 0.5160 | 0.7084 | 0.5971 | 0.9428 | | 0.0654 | 3.0 | 1266 | 0.3152 | 0.5105 | 0.6936 | 0.5881 | 0.9430 | | 0.0342 | 4.0 | 1688 | 0.3075 | 0.5214 | 0.7208 | 0.6051 | 0.9432 | | 0.0208 | 5.0 | 2110 | 0.3623 | 0.5109 | 0.7370 | 0.6034 | 0.9421 | | 0.0126 | 6.0 | 2532 | 0.3504 | 0.5167 | 0.7139 | 0.5995 | 0.9428 | | 0.0126 | 7.0 | 2954 | 0.3708 | 0.5260 | 0.7453 | 0.6167 | 0.9445 | | 0.0073 | 8.0 | 3376 | 0.3898 | 0.5175 | 0.7294 | 0.6054 | 0.9432 | | 0.0058 | 9.0 | 3798 | 0.3917 | 0.5185 | 0.7391 | 0.6094 | 0.9432 | | 0.0039 | 10.0 | 4220 | 0.3972 | 0.5228 | 0.7391 | 0.6124 | 0.9437 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1