--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_ST_DA_100_v2 results: [] --- # BERT_ST_DA_100_v2 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2371 - Precision: 0.9457 - Recall: 0.9480 - F1: 0.9469 - Accuracy: 0.9446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 59 | 0.3489 | 0.9065 | 0.9194 | 0.9129 | 0.9085 | | No log | 2.0 | 118 | 0.2883 | 0.9190 | 0.9267 | 0.9228 | 0.9180 | | No log | 3.0 | 177 | 0.2505 | 0.9322 | 0.9403 | 0.9362 | 0.9330 | | No log | 4.0 | 236 | 0.2300 | 0.9384 | 0.9446 | 0.9415 | 0.9384 | | No log | 5.0 | 295 | 0.2305 | 0.9397 | 0.9435 | 0.9416 | 0.9386 | | No log | 6.0 | 354 | 0.2332 | 0.9443 | 0.9482 | 0.9462 | 0.9438 | | No log | 7.0 | 413 | 0.2341 | 0.9433 | 0.9468 | 0.9450 | 0.9429 | | No log | 8.0 | 472 | 0.2364 | 0.9441 | 0.9474 | 0.9457 | 0.9430 | | 0.1814 | 9.0 | 531 | 0.2339 | 0.9457 | 0.9472 | 0.9465 | 0.9439 | | 0.1814 | 10.0 | 590 | 0.2371 | 0.9457 | 0.9480 | 0.9469 | 0.9446 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1