--- license: apache-2.0 base_model: judith0/classification_INE_v1 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: classification_INE_v1-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # classification_INE_v1-finetuned-eurosat This model is a fine-tuned version of [judith0/classification_INE_v1](https://huggingface.co/judith0/classification_INE_v1) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0261 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.96 | 6 | 0.0528 | 0.9884 | | 0.1411 | 1.92 | 12 | 0.0261 | 1.0 | | 0.1411 | 2.88 | 18 | 0.0182 | 1.0 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0