--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: bert_sentence_classifier results: [] --- # bert_sentence_classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4207 - F1: 0.6163 - Precision: 0.6163 - Recall: 0.6163 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:------:| | 1.8231 | 0.12 | 500 | 1.5368 | 0.5776 | 0.5776 | 0.5776 | | 1.5269 | 0.25 | 1000 | 1.4710 | 0.5935 | 0.5935 | 0.5935 | | 1.5059 | 0.37 | 1500 | 1.4287 | 0.6091 | 0.6091 | 0.6091 | | 1.4711 | 0.5 | 2000 | 1.4186 | 0.6106 | 0.6106 | 0.6106 | | 1.4269 | 0.62 | 2500 | 1.4154 | 0.6106 | 0.6106 | 0.6106 | | 1.4392 | 0.74 | 3000 | 1.4029 | 0.6197 | 0.6197 | 0.6197 | | 1.4587 | 0.87 | 3500 | 1.3800 | 0.6216 | 0.6216 | 0.6216 | | 1.4519 | 0.99 | 4000 | 1.3790 | 0.6231 | 0.6231 | 0.6231 | | 1.2645 | 1.12 | 4500 | 1.3879 | 0.6201 | 0.6201 | 0.6201 | | 1.2581 | 1.24 | 5000 | 1.4064 | 0.6186 | 0.6186 | 0.6186 | | 1.2425 | 1.36 | 5500 | 1.4008 | 0.6220 | 0.6220 | 0.6220 | | 1.2581 | 1.49 | 6000 | 1.3839 | 0.6209 | 0.6209 | 0.6209 | | 1.2522 | 1.61 | 6500 | 1.3916 | 0.6224 | 0.6224 | 0.6224 | | 1.2675 | 1.73 | 7000 | 1.3816 | 0.6194 | 0.6194 | 0.6194 | | 1.2697 | 1.86 | 7500 | 1.3960 | 0.6125 | 0.6125 | 0.6125 | | 1.258 | 1.98 | 8000 | 1.3871 | 0.6220 | 0.6220 | 0.6220 | | 1.087 | 2.11 | 8500 | 1.4184 | 0.6159 | 0.6159 | 0.6159 | | 1.0504 | 2.23 | 9000 | 1.4144 | 0.6201 | 0.6201 | 0.6201 | | 1.0649 | 2.35 | 9500 | 1.4304 | 0.6175 | 0.6175 | 0.6175 | | 1.0468 | 2.48 | 10000 | 1.4433 | 0.6205 | 0.6205 | 0.6205 | | 1.0711 | 2.6 | 10500 | 1.4420 | 0.6099 | 0.6099 | 0.6099 | | 1.0684 | 2.73 | 11000 | 1.4280 | 0.6114 | 0.6114 | 0.6114 | | 1.0514 | 2.85 | 11500 | 1.4436 | 0.6121 | 0.6121 | 0.6121 | | 1.0729 | 2.97 | 12000 | 1.4207 | 0.6163 | 0.6163 | 0.6163 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1