{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7de9482c9000>" }, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 828048, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707763427108567617, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": { ":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoDbL3hkUw+LoxnPYMjPb6ARAU9kt8wOgAAAAAAAAAAZrNsPewxlLlDgfA6M4VhNLz2DLvkdBC6AACAPwAAgD/NlPA8XJdKun6EgbvhY584noCguwtoCjoAAIA/AACAP40Bqb32xFC6AZaGPOGd/7gpBl+7jbj7twAAAAAAAIA/5uh4vfbIMbqJ0JI63nLTtJI0BzscSK65AACAPwAAgD8AzzI9UkDfudC+1bojOAq2vIdqusON+jkAAIA/AACAP+Zbgr3XcyC5unnZN4VZKjM06To61VIAtwAAgD8AAIA/M+lePPaQGLq1r2u65me7NEl4abuHeYk5AACAPwAAgD+ABFg9XNshuuMBkbv1x1041q9pOgBfrTgAAIA/AACAPzMzTb32jFW6rJIhOXd/XbZZbU67p+U8uAAAgD8AAIA/moWyu1yjWbq+9Sq4Mz8as3Egf7mDXkk3AACAPwAAgD8AMZ+9FFSSuqu40LkAvpa1LmyZOCAS8jgAAAAAAACAP+aGFb0ftdW5RWjpuiaL87XEahC7m+MHOgAAgD8AAIA/4IsSvumkALzQxKi4sW77t0HvTD26IDg4AACAPwAAgD+ztKO9w7FuunItvTjxTtgz+6qrumP13LcAAIA/AACAP80v0byPlme6TWQmOJHEFDMWqOC6o2BDtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg==" }, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.18079999999999996, "_stats_window_size": 100, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGO0iBXjlxSMAWyUTegDjAF0lEdAi3VsMZxaPnV9lChoBkdAZaOq2BreqWgHTegDaAhHQIt8OO2iL2p1fZQoaAZHQGbsTzVc2R9oB03oA2gIR0CLoKFcpsoEdX2UKGgGR0Blsj+98JD3aAdN6ANoCEdAi6jwudwvQHV9lChoBkdAZTDhy8zyjGgHTegDaAhHQIutl4qwyIp1fZQoaAZHQGR7K+8Gs3hoB03oA2gIR0CLsO0+kgwHdX2UKGgGR0BhFwXoC+10aAdN6ANoCEdAi7D6CUX533V9lChoBkdAZdS+KTB68mgHTegDaAhHQIu7lEqlP8B1fZQoaAZHQGcTAo5PuXxoB03oA2gIR0CLvQyO7xusdX2UKGgGR0BlZhD7ZWaMaAdN6ANoCEdAi++a90zTF3V9lChoBkdAYiBCqIacZ2gHTegDaAhHQIvy5WYF7ld1fZQoaAZHQF2KtMPBi1BoB03oA2gIR0CL+dvb48EFdX2UKGgGR0BfrySA6MisaAdN6ANoCEdAi/x3CCSRsHV9lChoBkdAZOp3C9AX22gHTegDaAhHQIwBCfSQYDV1fZQoaAZHQGgkx28qWkdoB03oA2gIR0CMBD3MY/FBdX2UKGgGR0Bl8DOu7pV0aAdN6ANoCEdAjAg6Eal1sHV9lChoBkdAZKs8K5TZQGgHTegDaAhHQIwYVShrWRR1fZQoaAZHQGfjfA0sOG1oB03oA2gIR0CMH51M/QjVdX2UKGgGR0BhMz3h4t6HaAdN6ANoCEdAjEOaJ66as3V9lChoBkdAYrb4CZF5OmgHTegDaAhHQIxLb37DVH51fZQoaAZHQGfIjFQ2uPpoB03oA2gIR0CMTpwuM+/ydX2UKGgGR0BnWFmlImPYaAdN6ANoCEdAjFDHMdLg43V9lChoBkdAXas8wHqu82gHTegDaAhHQIxQzbJwKjV1fZQoaAZHQGgeimVJL/VoB03oA2gIR0CMWYnqmj0udX2UKGgGR0BmznvhIe5naAdN6ANoCEdAjFsCExqO93V9lChoBkdAZNhoGpuMuWgHTegDaAhHQIySl45cTrV1fZQoaAZHQGDqsF+uvEFoB03oA2gIR0CMlf0lJHy3dX2UKGgGR0BnbM3uNPxhaAdN6ANoCEdAjJ18mrsByXV9lChoBkdAZ1qSzPa+OGgHTegDaAhHQIygctsenyd1fZQoaAZHQGWQj+JgsshoB03oA2gIR0CMpVfk3juKdX2UKGgGR0BiMfR7Z39raAdN6ANoCEdAjKiYw7DEWXV9lChoBkdAZWbZBcAzYWgHTegDaAhHQIysh0uDjBF1fZQoaAZHQGAexbSqlxhoB03oA2gIR0CMt5xvNu+AdX2UKGgGR0BlNRGvwEyMaAdN6ANoCEdAjL4ZBkZrHnV9lChoBkdAZeKg2ZRbbGgHTegDaAhHQIzlHi704BF1fZQoaAZHQGwv1TaTOgRoB02pA2gIR0CM6dqGDcubdX2UKGgGR0Bl55KpT/ACaAdN6ANoCEdAjOyMXizcAXV9lChoBkdAY+sxXXAdn2gHTegDaAhHQIzvhx3mmtR1fZQoaAZHQGFZMOXmeUZoB03oA2gIR0CM8YBIWgvldX2UKGgGR0BlnT7MxGlRaAdN6ANoCEdAjPombsniN3V9lChoBkdAYiOX2ugYg2gHTegDaAhHQIz7m0VrRBx1fZQoaAZHQGCLZwOvt+loB03oA2gIR0CNMP+WnjyXdX2UKGgGR0Bjwe1twaR7aAdN6ANoCEdAjTXYwh4dIXV9lChoBkdAZ5GL/jsD4mgHTegDaAhHQI1AZrLyMDR1fZQoaAZHQGO299tuUEBoB03oA2gIR0CNQ6K0lZ5idX2UKGgGR0BkTpHLA57xaAdN6ANoCEdAjUi3CKrJbXV9lChoBkdAZv2W8AaNuWgHTegDaAhHQI1MP4bjtHB1fZQoaAZHQGAFZWJaaCtoB03oA2gIR0CNUPvNNahYdX2UKGgGR0Bj6bHfdhy9aAdN6ANoCEdAjV7RJul41XV9lChoBkdAYC2x9G7SRmgHTegDaAhHQI1mYJJGvwF1fZQoaAZHQGTw4CyQgcNoB03oA2gIR0CNjdc6/7BPdX2UKGgGR0BiyejM3ZPEaAdN6ANoCEdAjZReuNgjQnV9lChoBkdAZZh0AcT8HmgHTegDaAhHQI2X3pY9xId1fZQoaAZHQGJ/Q5eZ5RloB03oA2gIR0CNnDNdqtYCdX2UKGgGR0Bm0dn9NvfkaAdN6ANoCEdAjZ7dE1EVnHV9lChoBkdAZH0nP3SKFmgHTegDaAhHQI2m1Rk3CKt1fZQoaAZHQGQ7FPznRsxoB03oA2gIR0CNqDYqXnhbdX2UKGgGR0BkBiFEiMYNaAdN6ANoCEdAjdyED6nBL3V9lChoBkdAXH9oqTbFj2gHTegDaAhHQI3f+UKRdQh1fZQoaAZHQGFYLGaQV9FoB03oA2gIR0CN5yyC4BmxdX2UKGgGR0Bhu/ukUKzBaAdN6ANoCEdAjen9PLxI8XV9lChoBkdAZ97txdY4hmgHTegDaAhHQI3us0+C9RJ1fZQoaAZHQGX+78vVVghoB03oA2gIR0CN84ujh1kldX2UKGgGR0Bi5tjTa0x/aAdN6ANoCEdAjfmJiy6cy3V9lChoBkdAZgJ//echDGgHTegDaAhHQI4HfHim2st1fZQoaAZHQGcoT8HfMwFoB03oA2gIR0CODmv7m+0xdX2UKGgGR0BguKmj0tiAaAdN6ANoCEdAjjGmPHT7VXV9lChoBkdAZtzXqZ+hG2gHTegDaAhHQI41+qo60Y11fZQoaAZHQGPDjdpItlJoB03oA2gIR0COOKnb7CSBdX2UKGgGR0BmaJ19v0iAaAdN6ANoCEdAjjuBPbfxc3V9lChoBkdAYsfXvphWo2gHTegDaAhHQI49YEGJN0x1fZQoaAZHQGLLoVEd/8VoB03oA2gIR0CORWBU70WedX2UKGgGR0BesxC6Ymb9aAdN6ANoCEdAjkaxWcSXdHV9lChoBkdAY776XSjQA2gHTegDaAhHQI5ZUAq/dqN1fZQoaAZHQGgSQBgeA/doB03oA2gIR0COgeD3/PxAdX2UKGgGR0Bj/6Ymb9ZSaAdN6ANoCEdAjonORDCxeXV9lChoBkdAZM1n7pFCs2gHTegDaAhHQI6Mp3xFy7x1fZQoaAZHQGXGgntv4udoB03oA2gIR0COke+pOvdNdX2UKGgGR0BfL97jT8YRaAdN6ANoCEdAjpWRbKRuCXV9lChoBkdAY9yFDfFaS2gHTegDaAhHQI6aTLwF1Sx1fZQoaAZHQGQ+r1/Ue+5oB03oA2gIR0COp1RD1GsndX2UKGgGR0BmRTMvAXVLaAdN6ANoCEdAjq+WfkFOf3V9lChoBkdAZTfWxQizLWgHTegDaAhHQI7b8RnOB191fZQoaAZHQGMawHRkVetoB03oA2gIR0CO4M+yJKradX2UKGgGR0BoPv1J17pnaAdN6ANoCEdAjuOIaLn9vXV9lChoBkdAYGNDSgGr0mgHTegDaAhHQI7mhPuXu3N1fZQoaAZHQF5W5zYEnstoB03oA2gIR0CO6I2eg+QmdX2UKGgGR0BicQPGyX2NaAdN6ANoCEdAjvC8IZ62OXV9lChoBkdAZC6AMlTm4mgHTegDaAhHQI7yFd7fHgh1fZQoaAZHQGCUvV/c32poB03oA2gIR0CPAX7JGOMmdX2UKGgGR0BiN+ZPVNHpaAdN6ANoCEdAjwTrE1l5GHV9lChoBkdAZQ6PbO/tY2gHTegDaAhHQI8ydMqSX+l1fZQoaAZHQF/T2AG0NSZoB03oA2gIR0CPNUz67/XHdX2UKGgGR0BmPQqqfe1saAdN6ANoCEdAjzo6UJOWSnV9lChoBkdAcL0uGsV+JGgHTbEBaAhHQI88qlN1yNp1fZQoaAZHQGeVJuuRs/JoB03oA2gIR0CPPXjebd8BdX2UKGgGR0BinWV7hNucaAdN6ANoCEdAj0F/2K2rn3V9lChoBkdAcputHQQcxWgHTaIBaAhHQI9GGgWac7R1fZQoaAZHQGR4qKYRdyFoB03oA2gIR0CPTMgLZzxPdX2UKGgGR0BmrnpljEvTaAdN6ANoCEdAj1NEBKcurnVlLg==" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 200, "observation_space": { ":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [ 8 ], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": { ":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" } }