--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - Nooon/Donate_a_cry metrics: - accuracy model-index: - name: ast-finetuned-cry results: - task: name: Audio Classification type: audio-classification dataset: name: DonateACry type: Nooon/Donate_a_cry config: train split: train args: train metrics: - name: Accuracy type: accuracy value: 0.5454545454545454 --- # ast-finetuned-cry This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the DonateACry dataset. It achieves the following results on the evaluation set: - Loss: 1.6404 - Accuracy: 0.5455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6297 | 1.0 | 11 | 1.6891 | 0.3636 | | 1.1137 | 2.0 | 22 | 1.3156 | 0.4545 | | 0.5047 | 3.0 | 33 | 1.3955 | 0.4545 | | 0.2062 | 4.0 | 44 | 1.4002 | 0.6364 | | 0.0613 | 5.0 | 55 | 1.6693 | 0.5455 | | 0.0142 | 6.0 | 66 | 1.3452 | 0.6364 | | 0.0053 | 7.0 | 77 | 1.6914 | 0.5455 | | 0.0038 | 8.0 | 88 | 1.6689 | 0.5455 | | 0.0027 | 9.0 | 99 | 1.6357 | 0.5455 | | 0.002 | 10.0 | 110 | 1.6404 | 0.5455 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1