import onnxruntime as ort import numpy as np def verify_onnx_model(onnx_model_path): # Load the ONNX model onnx_session = ort.InferenceSession(onnx_model_path) # Display model input details input_name = onnx_session.get_inputs()[0].name input_shape = onnx_session.get_inputs()[0].shape input_type = onnx_session.get_inputs()[0].type print(f"Input Name: {input_name}, Shape: {input_shape}, Type: {input_type}") # Display model output details output_name = onnx_session.get_outputs()[0].name output_shape = onnx_session.get_outputs()[0].shape output_type = onnx_session.get_outputs()[0].type print(f"Output Name: {output_name}, Shape: {output_shape}, Type: {output_type}") # Generate a dummy input matching the input shape # Assuming input shape is [None, 128, 128, 3], where None is the batch size dummy_input = np.random.rand(1, 128, 128, 3).astype(np.float32) # Perform inference result = onnx_session.run([output_name], {input_name: dummy_input}) print(f"Inference Result: {result}") # Path to the ONNX model onnx_model_path = './model.onnx' verify_onnx_model(onnx_model_path)