--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: validation args: wnut_17 metrics: - name: Precision type: precision value: 0.5613275613275613 - name: Recall type: recall value: 0.465311004784689 - name: F1 type: f1 value: 0.5088293001962066 - name: Accuracy type: accuracy value: 0.9229328338239229 --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.3765 - Precision: 0.5613 - Recall: 0.4653 - F1: 0.5088 - Accuracy: 0.9229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 425 | 0.3759 | 0.6258 | 0.3600 | 0.4571 | 0.9145 | | 0.1932 | 2.0 | 850 | 0.3226 | 0.5608 | 0.4522 | 0.5007 | 0.9237 | | 0.0778 | 3.0 | 1275 | 0.3765 | 0.5613 | 0.4653 | 0.5088 | 0.9229 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3