from transformers.models.qwen2.configuration_qwen2 import Qwen2Config from transformers.modeling_rope_utils import rope_config_validation from transformers.utils import logging logger = logging.get_logger(__name__) class VGSConfig(Qwen2Config): model_type = 'vgs' def __init__( self, vocab_size=151936, hidden_size=1536, intermediate_size=8960, num_hidden_layers=28, num_attention_heads=12, num_key_value_heads=2, hidden_act="silu", max_position_embeddings=131072, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=False, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, use_sliding_window=False, sliding_window=4096, max_window_layers=21, attention_dropout=0.05, num_labels=3, use_bias=False, **kwargs, ): super().__init__( tie_word_embeddings=tie_word_embeddings, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.use_sliding_window = use_sliding_window self.sliding_window = sliding_window # we check `use_sliding_window` in the modeling code self.max_window_layers = max_window_layers # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_dropout = attention_dropout self.num_labels = num_labels self.use_bias = use_bias # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, move it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self)