--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5372 - Accuracy: 0.7978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 265 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.2682 | 0.2038 | 54 | 2.0374 | 0.3214 | | 1.0997 | 1.2038 | 108 | 1.0029 | 0.6667 | | 0.6996 | 2.2038 | 162 | 0.7633 | 0.7857 | | 0.7031 | 3.2038 | 216 | 0.5940 | 0.7857 | | 0.4078 | 4.1849 | 265 | 0.5297 | 0.8452 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.0.1+cu117 - Datasets 3.0.2 - Tokenizers 0.19.1