--- language: [] library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:10K - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("josedossantos/urf-txtIndexacao-legalbertpt") # Run inference sentences = [ 'Regulamentação, profissão, designer de interiores.', 'Regulamentação profissional, Influenciador digital, criação, geração, Conteúdo digital, Rede social, Mídia social, atribuição, deveres.', 'Proibição, nomeação, homem, Cargo em comissão, Administração federal, condenação, crime, violência contra mulher. ', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 10,962 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| | Alteração, Lei de Benefícios da Previdência Social, criação, disciplinamento, auxílio-cuidador, segurado, Regime Geral de Previdência Social (RGPS), familiar, exercício, atividade, cuidador de deficientes. | Alteração, Estatuto do Idoso, requisito, exercício profissional, cuidador de idosos. _Poder público, estímulo, adoção, idoso, campanha educativa. | 1 | | Equiparação, doença, Lúpus Eritematoso Sistêmico, deficiência física, deficiência intelectual, efeito jurídico. | Criação, Política Nacional de Conscientização e Orientação sobre LES, combate, doença grave, campanha educativa, tratamento médico, informações, coleta, dados, portador, doença, pesquisa científica, garantia, acesso, medicamentos, inclusão, cosméticos, bloqueador solar, proteção, radiação ultravioleta, pele. | 0 | | Alteração, Lei de Isenção do IPI para Compra de Automóveis, critério, isenção tributária, Imposto sobre Produtos Industrializados (IPI), aquisição, Automóvel, motorista, Transporte individual, transporte de passageiro, Motorista de aplicativo, benefício fiscal, tributação. | Alteração, Lei de Isenção do IPI para Compra de Automóveis, isenção, Imposto sobre Produtos Industrializados (IPI), motorista de aplicativo, aquisição, veículo de passageiro, tributação. | 1 | * Loss: [ContrastiveLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: ```json { "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 2 - `num_train_epochs`: 1 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `prediction_loss_only`: True - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 2 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.0912 | 500 | 0.0278 | | 0.1824 | 1000 | 0.0242 | | 0.2737 | 1500 | 0.0226 | | 0.3649 | 2000 | 0.0201 | | 0.4561 | 2500 | 0.0189 | | 0.5473 | 3000 | 0.0165 | | 0.6386 | 3500 | 0.0148 | | 0.7298 | 4000 | 0.0135 | | 0.8210 | 4500 | 0.0122 | | 0.9122 | 5000 | 0.0128 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.0.0 - Transformers: 4.39.3 - PyTorch: 2.2.0 - Accelerate: 0.30.1 - Datasets: 2.14.4 - Tokenizers: 0.15.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### ContrastiveLoss ```bibtex @inproceedings{hadsell2006dimensionality, author={Hadsell, R. and Chopra, S. and LeCun, Y.}, booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, title={Dimensionality Reduction by Learning an Invariant Mapping}, year={2006}, volume={2}, number={}, pages={1735-1742}, doi={10.1109/CVPR.2006.100} } ```