|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:10K<n<100K |
|
- loss:ContrastiveLoss |
|
base_model: sentence-transformers/LaBSE |
|
widget: |
|
- source_sentence: Alteração, Código Penal, revogação, crime, desacato. |
|
sentences: |
|
- Alteração, Código Penal, aumenta da pena, crime, maus-tratos. |
|
- Equiparação, doença, Lúpus Eritematoso Sistêmico, deficiência física, deficiência |
|
intelectual, efeito jurídico. |
|
- Alteração, Legislação Tributária Federal, dedução, declaração de ajuste anual, |
|
pessoa física, pagamento, despesa, aluguel, imóvel residencial. |
|
- source_sentence: Alteração, fixação, jornada de trabalho, psicólogo. |
|
sentences: |
|
- "Alteração, lei federal, definição, jornada de trabalho, psicólogo.\r\n\r\n" |
|
- Ttítulo de capital nacional, Capital Nacional do Guabiju, Guabiju (RS), Rio Grande |
|
do Sul, título de topônimo. |
|
- 'Alteração, Lei Antifumo, proibição, comercialização, importação, fornecimento, |
|
publicidade, cigarro eletrônico. ' |
|
- source_sentence: Criação, Fundo Garantidor, empresa, alimentação. |
|
sentences: |
|
- Disciplinamento, auxílio financeiro, União, Estado (ente federado), Distrito |
|
Federal (Brasil), Município, fomento, exportação. |
|
- 'Alteração, Lei de Diretrizes e Bases da Educação Nacional (1996), proibição, |
|
educação à distância, área, saúde. ' |
|
- Alteração, Legislação Tributária Federal, dedução, declaração de ajuste anual, |
|
pessoa física, pagamento, despesa, aluguel, imóvel residencial. |
|
- source_sentence: Inclusão, Cerrado, Caatinga, Patrimônio da União. |
|
sentences: |
|
- Inclusão, cerrado, caatinga, patrimônio da União. |
|
- Regulamentação, Programa Nacional de Assistência Estudantil (PNAES), assistência |
|
estudantil, educação superior. |
|
- Alteração, Lei Federal, piso salarial, jornada de trabalho, enfermeiro, técnico |
|
de enfermagem, auxiliar de enfermagem, parteira. |
|
- source_sentence: Reserva, vaga, estágio, aluno, escola, rede pública. |
|
sentences: |
|
- 'Alteração, LDB, aluno, inscrição, Programa Bolsa-Atleta, garantia matrícula escolar, |
|
escola, proximidade, residência. ' |
|
- 'Título de Capital Nacional, Capital Nacional do Alimento, Marília (SP), São Paulo |
|
(Estado), Título de Topônimo. ' |
|
- Alteração, Legislação Tributária Federal, dedução, declaração de ajuste anual, |
|
pessoa física, pagamento, despesa, aluguel, imóvel residencial. |
|
pipeline_tag: sentence-similarity |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/LaBSE |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision e34fab64a3011d2176c99545a93d5cbddc9a91b7 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("josedossantos/urf-txtIndexacao-labse") |
|
# Run inference |
|
sentences = [ |
|
'Reserva, vaga, estágio, aluno, escola, rede pública.', |
|
'Alteração, LDB, aluno, inscrição, Programa Bolsa-Atleta, garantia matrícula escolar, escola, proximidade, residência. ', |
|
'Título de Capital Nacional, Capital Nacional do Alimento, Marília (SP), São Paulo (Estado), Título de Topônimo. ', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 10,962 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 10 tokens</li><li>mean: 47.92 tokens</li><li>max: 393 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 49.62 tokens</li><li>max: 426 tokens</li></ul> | <ul><li>0: ~49.20%</li><li>1: ~50.80%</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>Inscrição, nome, político, Império (1822-1889), Livro dos Heróis da Pátria. </code> | <code>Inscrição, nome, condessa, Livro dos Heróis da Pátria. </code> | <code>1</code> | |
|
| <code>Alteração, Lei do Projovem, inclusão, modalidade, artista, atleta.</code> | <code>Concessão, Auxílio Emergencial Financeiro, motorista, transporte escolar, suspensão, pagamento, financiamento, veículo, renegociação, dívida, Instituição Financeira, vigência, pandemia, Coronavírus.</code> | <code>0</code> | |
|
| <code>Alteração, Código Penal, inclusão, efeito da condenação, proibição, nomeação, cargo de comissão, âmbito federal, crime, violência contra a mulher.</code> | <code>Alteração, Código Penal, Efeito da condenação, proibição, nomeação, Cargo em comissão, Administração Pública, Condenado, crime, violência contra a mulher, Lei Maria da Penha.</code> | <code>1</code> | |
|
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", |
|
"margin": 0.5, |
|
"size_average": true |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 2 |
|
- `per_device_eval_batch_size`: 2 |
|
- `num_train_epochs`: 1 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 2 |
|
- `per_device_eval_batch_size`: 2 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | |
|
|:------:|:----:|:-------------:| |
|
| 0.0912 | 500 | 0.0268 | |
|
| 0.1824 | 1000 | 0.0247 | |
|
| 0.2737 | 1500 | 0.0227 | |
|
| 0.3649 | 2000 | 0.0215 | |
|
| 0.4561 | 2500 | 0.0196 | |
|
| 0.5473 | 3000 | 0.0182 | |
|
| 0.6386 | 3500 | 0.0178 | |
|
| 0.7298 | 4000 | 0.0152 | |
|
| 0.8210 | 4500 | 0.0136 | |
|
| 0.9122 | 5000 | 0.0132 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.39.3 |
|
- PyTorch: 2.2.0 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.14.4 |
|
- Tokenizers: 0.15.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### ContrastiveLoss |
|
```bibtex |
|
@inproceedings{hadsell2006dimensionality, |
|
author={Hadsell, R. and Chopra, S. and LeCun, Y.}, |
|
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, |
|
title={Dimensionality Reduction by Learning an Invariant Mapping}, |
|
year={2006}, |
|
volume={2}, |
|
number={}, |
|
pages={1735-1742}, |
|
doi={10.1109/CVPR.2006.100} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |