metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- text-classification
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: platzi-distilbert-model-similaritytexts-JorgeEnciso
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: datasetX
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.7083333333333334
- name: F1
type: f1
value: 0.8125984251968503
platzi-distilbert-model-similaritytexts-JorgeEnciso
This model is a fine-tuned version of distilbert-base-uncased on the datasetX dataset. It achieves the following results on the evaluation set:
- Loss: 0.5871
- Accuracy: 0.7083
- F1: 0.8126
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.6336 | 1.09 | 500 | 0.6239 | 0.6838 | 0.8122 |
0.6337 | 2.18 | 1000 | 0.6223 | 0.6912 | 0.8158 |
0.6076 | 3.27 | 1500 | 0.5871 | 0.7083 | 0.8126 |
0.5585 | 4.36 | 2000 | 0.6390 | 0.6887 | 0.7776 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3