--- license: apache-2.0 tags: - generated_from_trainer datasets: - udpos28 metrics: - precision - recall - f1 - accuracy model-index: - name: udpos28-sm-first-POS results: - task: name: Token Classification type: token-classification dataset: name: udpos28 type: udpos28 args: en metrics: - name: Precision type: precision value: 0.9511089206505667 - name: Recall type: recall value: 0.9546093116207286 - name: F1 type: f1 value: 0.9528559014062253 - name: Accuracy type: accuracy value: 0.9559133601686793 --- # udpos28-sm-first-POS This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the udpos28 dataset. It achieves the following results on the evaluation set: - Loss: 0.1896 - Precision: 0.9511 - Recall: 0.9546 - F1: 0.9529 - Accuracy: 0.9559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1696 | 1.0 | 4978 | 0.1700 | 0.9440 | 0.9464 | 0.9452 | 0.9472 | | 0.0973 | 2.0 | 9956 | 0.1705 | 0.9487 | 0.9533 | 0.9510 | 0.9543 | | 0.0508 | 3.0 | 14934 | 0.1896 | 0.9511 | 0.9546 | 0.9529 | 0.9559 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1