--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - arxiv_dataset metrics: - accuracy - precision - recall - f1 model-index: - name: test_implementation results: - task: name: Text Classification type: text-classification dataset: name: arxiv_dataset type: arxiv_dataset config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5925759148656968 - name: Precision type: precision value: 0.00904383876000648 - name: Recall type: recall value: 0.37505752416014726 - name: F1 type: f1 value: 0.017661795045162184 --- # test_implementation This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the arxiv_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.6736 - Accuracy: 0.5926 - Precision: 0.0090 - Recall: 0.3751 - F1: 0.0177 - Hamming: 0.4074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 0.7077 | 0.0 | 5 | 0.6857 | 0.5529 | 0.0089 | 0.4040 | 0.0173 | 0.4471 | | 0.6801 | 0.0 | 10 | 0.6736 | 0.5926 | 0.0090 | 0.3751 | 0.0177 | 0.4074 | ### Framework versions - Transformers 4.37.2 - Pytorch 1.12.1+cu113 - Datasets 2.16.1 - Tokenizers 0.15.1