--- language: it license: apache-2.0 tags: - audio - automatic-speech-recognition - hf-asr-leaderboard - it - mozilla-foundation/common_voice_6_0 - robust-speech-event - speech - xlsr-fine-tuning-week datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer base_model: facebook/wav2vec2-large-xlsr-53 model-index: - name: XLSR Wav2Vec2 Italian by Jonatas Grosman results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice it type: common_voice args: it metrics: - type: wer value: 9.41 name: Test WER - type: cer value: 2.29 name: Test CER - type: wer value: 6.91 name: Test WER (+LM) - type: cer value: 1.83 name: Test CER (+LM) - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: it metrics: - type: wer value: 21.78 name: Dev WER - type: cer value: 7.94 name: Dev CER - type: wer value: 15.82 name: Dev WER (+LM) - type: cer value: 6.83 name: Dev CER (+LM) --- # Fine-tuned XLSR-53 large model for speech recognition in Italian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Italian using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-italian") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "it" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-italian" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | POI LEI MORÌ. | POI LEI MORÌ | | IL LIBRO HA SUSCITATO MOLTE POLEMICHE A CAUSA DEI SUOI CONTENUTI. | IL LIBRO HA SUSCITATO MOLTE POLEMICHE A CAUSA DEI SUOI CONTENUTI | | "FIN DALL'INIZIO LA SEDE EPISCOPALE È STATA IMMEDIATAMENTE SOGGETTA ALLA SANTA SEDE." | FIN DALL'INIZIO LA SEDE EPISCOPALE È STATA IMMEDIATAMENTE SOGGETTA ALLA SANTA SEDE | | IL VUOTO ASSOLUTO? | IL VUOTO ASSOLUTO | | DOPO ALCUNI ANNI, EGLI DECISE DI TORNARE IN INDIA PER RACCOGLIERE ALTRI INSEGNAMENTI. | DOPO ALCUNI ANNI EGLI DECISE DI TORNARE IN INDIA PER RACCOGLIERE ALTRI INSEGNAMENTI | | SALVATION SUE | SALVATION SOO | | IN QUESTO MODO, DECIO OTTENNE IL POTERE IMPERIALE. | IN QUESTO MODO DECHO OTTENNE IL POTERE IMPERIALE | | SPARTA NOVARA ACQUISISCE IL TITOLO SPORTIVO PER GIOCARE IN PRIMA CATEGORIA. | PARCANOVARACFILISCE IL TITOLO SPORTIVO PER GIOCARE IN PRIMA CATEGORIA | | IN SEGUITO, KYGO E SHEAR HANNO PROPOSTO DI CONTINUARE A LAVORARE SULLA CANZONE. | IN SEGUITO KIGO E SHIAR HANNO PROPOSTO DI CONTINUARE A LAVORARE SULLA CANZONE | | ALAN CLARKE | ALAN CLARK | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-italian --dataset mozilla-foundation/common_voice_6_0 --config it --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-italian --dataset speech-recognition-community-v2/dev_data --config it --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-italian, title={Fine-tuned {XLSR}-53 large model for speech recognition in {I}talian}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-italian}}, year={2021} } ```