--- base_model: deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct library_name: peft license: other tags: - generated_from_trainer model-index: - name: deepseek_coder_v2 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/stanford_johnny/filtering_finetuning/runs/bxhqbdle) # deepseek_coder_v2 This model is a fine-tuned version of [deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4005 | 0.1613 | 5 | 0.3098 | | 0.2848 | 0.3226 | 10 | 0.2342 | | 0.2249 | 0.4839 | 15 | 0.2092 | | 0.2221 | 0.6452 | 20 | 0.2001 | | 0.2141 | 0.8065 | 25 | 0.1949 | | 0.2094 | 0.9677 | 30 | 0.1922 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1