--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-winter_2 results: [] --- # segformer-b0-winter_2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the johanhag/winter dataset. It achieves the following results on the evaluation set: - Loss: 1.0535 - Mean Iou: 0.3344 - Mean Accuracy: 0.4082 - Overall Accuracy: 0.8584 - Accuracy Unlabeled: nan - Accuracy Road: 0.5791 - Accuracy Side walk: 0.1367 - Accuracy Car: 0.7716 - Accuracy Pedestrian: 0.0 - Accuracy Sign: 0.0 - Accuracy Other: 0.9616 - Iou Unlabeled: nan - Iou Road: 0.4852 - Iou Side walk: 0.1124 - Iou Car: 0.5493 - Iou Pedestrian: 0.0 - Iou Sign: 0.0 - Iou Other: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Road | Accuracy Side walk | Accuracy Car | Accuracy Pedestrian | Accuracy Sign | Accuracy Other | Iou Unlabeled | Iou Road | Iou Side walk | Iou Car | Iou Pedestrian | Iou Sign | Iou Other | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:------------------:|:------------:|:-------------------:|:-------------:|:--------------:|:-------------:|:--------:|:-------------:|:-------:|:--------------:|:--------:|:---------:| | 1.5205 | 0.37 | 20 | 1.7165 | 0.2199 | 0.4062 | 0.7410 | nan | 0.6131 | 0.0612 | 0.8217 | 0.0191 | 0.1249 | 0.7972 | 0.0 | 0.4142 | 0.0255 | 0.3422 | 0.0160 | 0.0075 | 0.7342 | | 1.206 | 0.74 | 40 | 1.3022 | 0.2637 | 0.3793 | 0.8243 | nan | 0.6081 | 0.1049 | 0.6391 | 0.0083 | 0.0 | 0.9156 | 0.0 | 0.4387 | 0.0670 | 0.5111 | 0.0083 | 0.0 | 0.8211 | | 0.9859 | 1.11 | 60 | 1.1535 | 0.2756 | 0.4094 | 0.8356 | nan | 0.6077 | 0.2204 | 0.7029 | 0.0 | 0.0 | 0.9254 | 0.0 | 0.4650 | 0.1159 | 0.5125 | 0.0 | 0.0 | 0.8359 | | 0.9968 | 1.48 | 80 | 1.0899 | 0.3171 | 0.3962 | 0.8452 | nan | 0.5982 | 0.0850 | 0.7523 | 0.0 | 0.0 | 0.9416 | nan | 0.4673 | 0.0643 | 0.5239 | 0.0 | 0.0 | 0.8468 | | 0.92 | 1.85 | 100 | 1.0535 | 0.3344 | 0.4082 | 0.8584 | nan | 0.5791 | 0.1367 | 0.7716 | 0.0 | 0.0 | 0.9616 | nan | 0.4852 | 0.1124 | 0.5493 | 0.0 | 0.0 | 0.8593 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0