--- base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer datasets: - funsd model-index: - name: layoutlm-funsd results: [] --- # layoutlm-funsd This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset. It achieves the following results on the evaluation set: - Loss: 1.6862 - Answer: {'precision': 0.03633114949374628, 'recall': 0.0754017305315204, 'f1': 0.04903536977491961, 'number': 809} - Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} - Question: {'precision': 0.11273957158962795, 'recall': 0.18779342723004694, 'f1': 0.14089468122578372, 'number': 1065} - Overall Precision: 0.0754 - Overall Recall: 0.1310 - Overall F1: 0.0957 - Overall Accuracy: 0.3643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.8797 | 1.0 | 10 | 1.6862 | {'precision': 0.03633114949374628, 'recall': 0.0754017305315204, 'f1': 0.04903536977491961, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.11273957158962795, 'recall': 0.18779342723004694, 'f1': 0.14089468122578372, 'number': 1065} | 0.0754 | 0.1310 | 0.0957 | 0.3643 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3