--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-large-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: es split: test args: es metrics: - name: Wer type: wer value: 5.074450392391248 --- # openai/whisper-large-v2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1648 - Wer: 5.0745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1556 | 0.5 | 750 | 0.1683 | 5.0959 | | 0.1732 | 1.35 | 1500 | 0.1648 | 5.0745 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2