--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the italian section of voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4896 ## Model description This model do text to speeche task in italian language ## Intended uses & limitations More information needed Example: from transformers import AutoProcessor, SpeechT5ForTextToSpeech processor = AutoProcessor.from_pretrained("jjsprockel/speecht5_finetuned_voxpopuli_it") model = SpeechT5ForTextToSpeech.from_pretrained("jjsprockel/speecht5_finetuned_voxpopuli_it") speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0) text = "Quando pensi che sarĂ  possibile viaggiare?" inputs = processor(text=text, return_tensors="pt") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) from IPython.display import Audio Audio(speech.numpy(), rate=16000) ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5445 | 6.13 | 1000 | 0.5106 | | 0.5262 | 12.26 | 2000 | 0.4964 | | 0.5154 | 18.39 | 3000 | 0.4918 | | 0.5186 | 24.52 | 4000 | 0.4896 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3