---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: model.pkl
widget:
structuredData:
angel_n_rounds:
- 0.0
- 0.0
- 0.0
pre_seed_n_rounds:
- 0.0
- 0.0
- 0.0
seed_funding_normalised:
- 0.0
- 0.0
- 0.0018888888888888
seed_n_rounds:
- 2.0
- 0.0
- 1.0
time_first_funding_normalised:
- 0.2120435618193465
- 0.380183642963912
- 0.209908178518044
time_till_series_a_normalised:
- 0.3253001132502832
- 0.3585503963759909
- 0.2226500566251415
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|-------------------|---------|
| C | 1.0 |
| class_weight | |
| dual | False |
| fit_intercept | True |
| intercept_scaling | 1 |
| l1_ratio | |
| max_iter | 100 |
| multi_class | auto |
| n_jobs | |
| penalty | none |
| random_state | 0 |
| solver | lbfgs |
| tol | 0.0001 |
| verbose | 0 |
| warm_start | False |
LogisticRegression(penalty='none', random_state=0)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LogisticRegression(penalty='none', random_state=0)