|
import torch |
|
import torch.nn as nn |
|
from transformers import ( |
|
RobertaModel, |
|
RobertaForQuestionAnswering, |
|
) |
|
|
|
|
|
class SpanPredictionHead(nn.Module): |
|
"""Head for span prediction tasks. |
|
Can be viewed as a 2-class output layer that is applied to every position. |
|
""" |
|
|
|
def __init__(self, input_dim, inner_dim, num_classes, pooler_dropout): |
|
assert num_classes == 2 |
|
super().__init__() |
|
self.dense = nn.Linear(input_dim, inner_dim) |
|
self.dropout = nn.Dropout(p=pooler_dropout) |
|
self.out_proj = nn.Linear(inner_dim, num_classes) |
|
|
|
def forward(self, features, **kwargs): |
|
x = features |
|
x = self.dropout(x) |
|
x = self.dense(x) |
|
x = torch.tanh(x) |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
return x |
|
|
|
|
|
class RobertaForPororoMRC(RobertaForQuestionAnswering): |
|
|
|
def __init__(self, config): |
|
|
|
super(RobertaForQuestionAnswering, self).__init__(config) |
|
|
|
config.num_labels = 2 |
|
self.num_labels = config.num_labels |
|
|
|
self.roberta = RobertaModel(config, add_pooling_layer=False) |
|
self.qa_outputs = SpanPredictionHead( |
|
input_dim=config.hidden_size, |
|
inner_dim=config.span_head_inner_dim, |
|
num_classes=config.num_labels, |
|
pooler_dropout=config.span_head_dropout, |
|
) |
|
|
|
self.init_weights() |