--- library_name: transformers language: - ko license: apache-2.0 base_model: openai/whisper-base tags: - hf-asr-leaderboard - generated_from_trainer datasets: - jindol/debugged_03_Whisper_datasets model-index: - name: repo_name results: [] --- # repo_name This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the debugged_03_Whisper_datasets dataset. It achieves the following results on the evaluation set: - Loss: 1.6540 - Cer: 32.5714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0001 | 500.0 | 1000 | 1.4956 | 32.5714 | | 0.0001 | 1000.0 | 2000 | 1.5831 | 36.0 | | 0.0 | 1500.0 | 3000 | 1.6306 | 32.5714 | | 0.0 | 2000.0 | 4000 | 1.6540 | 32.5714 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.0.1 - Datasets 3.1.0 - Tokenizers 0.20.3