# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/embedding.py # Commit id: f1a73d074002226c42ce65a1df170ecff9f022c0 # Copyright (c) 2022, Tri Dao. import torch import torch.nn as nn from einops import rearrange from torch import Tensor from transformers.models.xlm_roberta.modeling_xlm_roberta import create_position_ids_from_input_ids class XLMRobertaEmbeddings(nn.Module): def __init__( self, embed_dim, vocab_size, max_position_embeddings, type_vocab_size, padding_idx=None, device=None, dtype=None, ): """ If max_position_embeddings <= 0, there's no position embeddings If type_vocab_size <= 0, there's no token type embeddings """ factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.word_embeddings = nn.Embedding( vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs ) self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size if self.max_position_embeddings > 0: self.position_embeddings = nn.Embedding( max_position_embeddings, embed_dim, **factory_kwargs ) if self.type_vocab_size > 0: self.token_type_embeddings = nn.Embedding(type_vocab_size, embed_dim, **factory_kwargs) def forward(self, input_ids, position_ids=None, token_type_ids=None, adapter_mask=None): """ input_ids: (batch, seqlen) position_ids: (batch, seqlen) token_type_ids: (batch, seqlen) """ batch_size, seqlen = input_ids.shape if adapter_mask is not None: unique_tasks = torch.unique(adapter_mask).tolist() embedding_dtype = next(self.word_embeddings.parameters()).dtype embeddings = torch.empty(*input_ids.shape, self.word_embeddings.embedding_dim, dtype=embedding_dtype, device=input_ids.device) for task_id in unique_tasks: task_indices = (adapter_mask == task_id).nonzero(as_tuple=True)[0] task_input_ids = input_ids[task_indices] task_embeddings = self.word_embeddings(task_input_ids, task_id=task_id) embeddings[task_indices] = task_embeddings else: embeddings = self.word_embeddings(input_ids) if self.max_position_embeddings > 0: if position_ids is None: position_ids = create_position_ids_from_input_ids(input_ids, padding_idx=self.word_embeddings.padding_idx).to(input_ids.device) # position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device) position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings if self.type_vocab_size > 0: if token_type_ids is None: token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device) if adapter_mask is not None: unique_tasks = torch.unique(adapter_mask).tolist() for task_id in unique_tasks: task_token_type_embeddings = self.token_type_embeddings(token_type_ids, task_id=task_id) task_indices = (adapter_mask == task_id).nonzero(as_tuple=True)[0] embeddings[task_indices] = embeddings[task_indices] + task_token_type_embeddings else: token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = embeddings + token_type_embeddings return embeddings