---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
- transformers
- transformers.js
language:
- de
- en
inference: false
license: apache-2.0
model-index:
- name: jina-embeddings-v2-base-de
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 73.76119402985076
- type: ap
value: 35.99577188521176
- type: f1
value: 67.50397431543269
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (de)
config: de
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 68.9186295503212
- type: ap
value: 79.73307115840507
- type: f1
value: 66.66245744831339
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 77.52215
- type: ap
value: 71.85051037177416
- type: f1
value: 77.4171096157774
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 38.498
- type: f1
value: 38.058193386555956
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (de)
config: de
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 37.717999999999996
- type: f1
value: 37.22674371574757
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.319999999999997
- type: map_at_10
value: 40.351
- type: map_at_100
value: 41.435
- type: map_at_1000
value: 41.443000000000005
- type: map_at_3
value: 35.266
- type: map_at_5
value: 37.99
- type: mrr_at_1
value: 25.746999999999996
- type: mrr_at_10
value: 40.515
- type: mrr_at_100
value: 41.606
- type: mrr_at_1000
value: 41.614000000000004
- type: mrr_at_3
value: 35.42
- type: mrr_at_5
value: 38.112
- type: ndcg_at_1
value: 25.319999999999997
- type: ndcg_at_10
value: 49.332
- type: ndcg_at_100
value: 53.909
- type: ndcg_at_1000
value: 54.089
- type: ndcg_at_3
value: 38.705
- type: ndcg_at_5
value: 43.606
- type: precision_at_1
value: 25.319999999999997
- type: precision_at_10
value: 7.831
- type: precision_at_100
value: 0.9820000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 16.24
- type: precision_at_5
value: 12.119
- type: recall_at_1
value: 25.319999999999997
- type: recall_at_10
value: 78.307
- type: recall_at_100
value: 98.222
- type: recall_at_1000
value: 99.57300000000001
- type: recall_at_3
value: 48.72
- type: recall_at_5
value: 60.597
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 41.43100588255654
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 32.08988904593667
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 60.55514765595906
- type: mrr
value: 73.51393835465858
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 79.6723823121172
- type: cos_sim_spearman
value: 76.90596922214986
- type: euclidean_pearson
value: 77.87910737957918
- type: euclidean_spearman
value: 76.66319260598262
- type: manhattan_pearson
value: 77.37039493457965
- type: manhattan_spearman
value: 76.09872191280964
- task:
type: BitextMining
dataset:
type: mteb/bucc-bitext-mining
name: MTEB BUCC (de-en)
config: de-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 98.97703549060543
- type: f1
value: 98.86569241475296
- type: precision
value: 98.81002087682673
- type: recall
value: 98.97703549060543
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 83.93506493506493
- type: f1
value: 83.91014949949302
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 34.970675877585144
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 28.779230269190954
- task:
type: Clustering
dataset:
type: slvnwhrl/blurbs-clustering-p2p
name: MTEB BlurbsClusteringP2P
config: default
split: test
revision: a2dd5b02a77de3466a3eaa98ae586b5610314496
metrics:
- type: v_measure
value: 35.490175601567216
- task:
type: Clustering
dataset:
type: slvnwhrl/blurbs-clustering-s2s
name: MTEB BlurbsClusteringS2S
config: default
split: test
revision: 9bfff9a7f8f6dc6ffc9da71c48dd48b68696471d
metrics:
- type: v_measure
value: 16.16638280560168
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.830999999999996
- type: map_at_10
value: 41.355
- type: map_at_100
value: 42.791000000000004
- type: map_at_1000
value: 42.918
- type: map_at_3
value: 38.237
- type: map_at_5
value: 40.066
- type: mrr_at_1
value: 38.484
- type: mrr_at_10
value: 47.593
- type: mrr_at_100
value: 48.388
- type: mrr_at_1000
value: 48.439
- type: mrr_at_3
value: 45.279
- type: mrr_at_5
value: 46.724
- type: ndcg_at_1
value: 38.484
- type: ndcg_at_10
value: 47.27
- type: ndcg_at_100
value: 52.568000000000005
- type: ndcg_at_1000
value: 54.729000000000006
- type: ndcg_at_3
value: 43.061
- type: ndcg_at_5
value: 45.083
- type: precision_at_1
value: 38.484
- type: precision_at_10
value: 8.927
- type: precision_at_100
value: 1.425
- type: precision_at_1000
value: 0.19
- type: precision_at_3
value: 20.791999999999998
- type: precision_at_5
value: 14.85
- type: recall_at_1
value: 30.830999999999996
- type: recall_at_10
value: 57.87799999999999
- type: recall_at_100
value: 80.124
- type: recall_at_1000
value: 94.208
- type: recall_at_3
value: 45.083
- type: recall_at_5
value: 51.154999999999994
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.782
- type: map_at_10
value: 34.492
- type: map_at_100
value: 35.521
- type: map_at_1000
value: 35.638
- type: map_at_3
value: 31.735999999999997
- type: map_at_5
value: 33.339
- type: mrr_at_1
value: 32.357
- type: mrr_at_10
value: 39.965
- type: mrr_at_100
value: 40.644000000000005
- type: mrr_at_1000
value: 40.695
- type: mrr_at_3
value: 37.739
- type: mrr_at_5
value: 39.061
- type: ndcg_at_1
value: 32.357
- type: ndcg_at_10
value: 39.644
- type: ndcg_at_100
value: 43.851
- type: ndcg_at_1000
value: 46.211999999999996
- type: ndcg_at_3
value: 35.675000000000004
- type: ndcg_at_5
value: 37.564
- type: precision_at_1
value: 32.357
- type: precision_at_10
value: 7.344
- type: precision_at_100
value: 1.201
- type: precision_at_1000
value: 0.168
- type: precision_at_3
value: 17.155
- type: precision_at_5
value: 12.166
- type: recall_at_1
value: 25.782
- type: recall_at_10
value: 49.132999999999996
- type: recall_at_100
value: 67.24
- type: recall_at_1000
value: 83.045
- type: recall_at_3
value: 37.021
- type: recall_at_5
value: 42.548
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 35.778999999999996
- type: map_at_10
value: 47.038000000000004
- type: map_at_100
value: 48.064
- type: map_at_1000
value: 48.128
- type: map_at_3
value: 44.186
- type: map_at_5
value: 45.788000000000004
- type: mrr_at_1
value: 41.254000000000005
- type: mrr_at_10
value: 50.556999999999995
- type: mrr_at_100
value: 51.296
- type: mrr_at_1000
value: 51.331
- type: mrr_at_3
value: 48.318
- type: mrr_at_5
value: 49.619
- type: ndcg_at_1
value: 41.254000000000005
- type: ndcg_at_10
value: 52.454
- type: ndcg_at_100
value: 56.776
- type: ndcg_at_1000
value: 58.181000000000004
- type: ndcg_at_3
value: 47.713
- type: ndcg_at_5
value: 49.997
- type: precision_at_1
value: 41.254000000000005
- type: precision_at_10
value: 8.464
- type: precision_at_100
value: 1.157
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 21.526
- type: precision_at_5
value: 14.696000000000002
- type: recall_at_1
value: 35.778999999999996
- type: recall_at_10
value: 64.85300000000001
- type: recall_at_100
value: 83.98400000000001
- type: recall_at_1000
value: 94.18299999999999
- type: recall_at_3
value: 51.929
- type: recall_at_5
value: 57.666
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.719
- type: map_at_10
value: 29.326999999999998
- type: map_at_100
value: 30.314000000000004
- type: map_at_1000
value: 30.397000000000002
- type: map_at_3
value: 27.101
- type: map_at_5
value: 28.141
- type: mrr_at_1
value: 23.503
- type: mrr_at_10
value: 31.225
- type: mrr_at_100
value: 32.096000000000004
- type: mrr_at_1000
value: 32.159
- type: mrr_at_3
value: 29.076999999999998
- type: mrr_at_5
value: 30.083
- type: ndcg_at_1
value: 23.503
- type: ndcg_at_10
value: 33.842
- type: ndcg_at_100
value: 39.038000000000004
- type: ndcg_at_1000
value: 41.214
- type: ndcg_at_3
value: 29.347
- type: ndcg_at_5
value: 31.121
- type: precision_at_1
value: 23.503
- type: precision_at_10
value: 5.266
- type: precision_at_100
value: 0.831
- type: precision_at_1000
value: 0.106
- type: precision_at_3
value: 12.504999999999999
- type: precision_at_5
value: 8.565000000000001
- type: recall_at_1
value: 21.719
- type: recall_at_10
value: 46.024
- type: recall_at_100
value: 70.78999999999999
- type: recall_at_1000
value: 87.022
- type: recall_at_3
value: 33.64
- type: recall_at_5
value: 37.992
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 15.601
- type: map_at_10
value: 22.054000000000002
- type: map_at_100
value: 23.177
- type: map_at_1000
value: 23.308
- type: map_at_3
value: 19.772000000000002
- type: map_at_5
value: 21.055
- type: mrr_at_1
value: 19.403000000000002
- type: mrr_at_10
value: 26.409
- type: mrr_at_100
value: 27.356
- type: mrr_at_1000
value: 27.441
- type: mrr_at_3
value: 24.108999999999998
- type: mrr_at_5
value: 25.427
- type: ndcg_at_1
value: 19.403000000000002
- type: ndcg_at_10
value: 26.474999999999998
- type: ndcg_at_100
value: 32.086
- type: ndcg_at_1000
value: 35.231
- type: ndcg_at_3
value: 22.289
- type: ndcg_at_5
value: 24.271
- type: precision_at_1
value: 19.403000000000002
- type: precision_at_10
value: 4.813
- type: precision_at_100
value: 0.8869999999999999
- type: precision_at_1000
value: 0.13
- type: precision_at_3
value: 10.531
- type: precision_at_5
value: 7.710999999999999
- type: recall_at_1
value: 15.601
- type: recall_at_10
value: 35.916
- type: recall_at_100
value: 60.8
- type: recall_at_1000
value: 83.245
- type: recall_at_3
value: 24.321
- type: recall_at_5
value: 29.372999999999998
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.522
- type: map_at_10
value: 34.854
- type: map_at_100
value: 36.269
- type: map_at_1000
value: 36.387
- type: map_at_3
value: 32.187
- type: map_at_5
value: 33.692
- type: mrr_at_1
value: 31.375999999999998
- type: mrr_at_10
value: 40.471000000000004
- type: mrr_at_100
value: 41.481
- type: mrr_at_1000
value: 41.533
- type: mrr_at_3
value: 38.274
- type: mrr_at_5
value: 39.612
- type: ndcg_at_1
value: 31.375999999999998
- type: ndcg_at_10
value: 40.298
- type: ndcg_at_100
value: 46.255
- type: ndcg_at_1000
value: 48.522
- type: ndcg_at_3
value: 36.049
- type: ndcg_at_5
value: 38.095
- type: precision_at_1
value: 31.375999999999998
- type: precision_at_10
value: 7.305000000000001
- type: precision_at_100
value: 1.201
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 17.132
- type: precision_at_5
value: 12.107999999999999
- type: recall_at_1
value: 25.522
- type: recall_at_10
value: 50.988
- type: recall_at_100
value: 76.005
- type: recall_at_1000
value: 91.11200000000001
- type: recall_at_3
value: 38.808
- type: recall_at_5
value: 44.279
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.615000000000002
- type: map_at_10
value: 32.843
- type: map_at_100
value: 34.172999999999995
- type: map_at_1000
value: 34.286
- type: map_at_3
value: 30.125
- type: map_at_5
value: 31.495
- type: mrr_at_1
value: 30.023
- type: mrr_at_10
value: 38.106
- type: mrr_at_100
value: 39.01
- type: mrr_at_1000
value: 39.071
- type: mrr_at_3
value: 35.674
- type: mrr_at_5
value: 36.924
- type: ndcg_at_1
value: 30.023
- type: ndcg_at_10
value: 38.091
- type: ndcg_at_100
value: 43.771
- type: ndcg_at_1000
value: 46.315
- type: ndcg_at_3
value: 33.507
- type: ndcg_at_5
value: 35.304
- type: precision_at_1
value: 30.023
- type: precision_at_10
value: 6.837999999999999
- type: precision_at_100
value: 1.124
- type: precision_at_1000
value: 0.152
- type: precision_at_3
value: 15.562999999999999
- type: precision_at_5
value: 10.936
- type: recall_at_1
value: 24.615000000000002
- type: recall_at_10
value: 48.691
- type: recall_at_100
value: 72.884
- type: recall_at_1000
value: 90.387
- type: recall_at_3
value: 35.659
- type: recall_at_5
value: 40.602
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.223666666666666
- type: map_at_10
value: 31.338166666666673
- type: map_at_100
value: 32.47358333333333
- type: map_at_1000
value: 32.5955
- type: map_at_3
value: 28.84133333333333
- type: map_at_5
value: 30.20808333333333
- type: mrr_at_1
value: 27.62483333333333
- type: mrr_at_10
value: 35.385916666666674
- type: mrr_at_100
value: 36.23325
- type: mrr_at_1000
value: 36.29966666666667
- type: mrr_at_3
value: 33.16583333333333
- type: mrr_at_5
value: 34.41983333333334
- type: ndcg_at_1
value: 27.62483333333333
- type: ndcg_at_10
value: 36.222
- type: ndcg_at_100
value: 41.29491666666666
- type: ndcg_at_1000
value: 43.85508333333333
- type: ndcg_at_3
value: 31.95116666666667
- type: ndcg_at_5
value: 33.88541666666667
- type: precision_at_1
value: 27.62483333333333
- type: precision_at_10
value: 6.339916666666667
- type: precision_at_100
value: 1.0483333333333333
- type: precision_at_1000
value: 0.14608333333333334
- type: precision_at_3
value: 14.726500000000003
- type: precision_at_5
value: 10.395
- type: recall_at_1
value: 23.223666666666666
- type: recall_at_10
value: 46.778999999999996
- type: recall_at_100
value: 69.27141666666667
- type: recall_at_1000
value: 87.27383333333334
- type: recall_at_3
value: 34.678749999999994
- type: recall_at_5
value: 39.79900000000001
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.677
- type: map_at_10
value: 27.828000000000003
- type: map_at_100
value: 28.538999999999998
- type: map_at_1000
value: 28.64
- type: map_at_3
value: 26.105
- type: map_at_5
value: 27.009
- type: mrr_at_1
value: 24.387
- type: mrr_at_10
value: 30.209999999999997
- type: mrr_at_100
value: 30.953000000000003
- type: mrr_at_1000
value: 31.029
- type: mrr_at_3
value: 28.707
- type: mrr_at_5
value: 29.610999999999997
- type: ndcg_at_1
value: 24.387
- type: ndcg_at_10
value: 31.378
- type: ndcg_at_100
value: 35.249
- type: ndcg_at_1000
value: 37.923
- type: ndcg_at_3
value: 28.213
- type: ndcg_at_5
value: 29.658
- type: precision_at_1
value: 24.387
- type: precision_at_10
value: 4.8309999999999995
- type: precision_at_100
value: 0.73
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 12.168
- type: precision_at_5
value: 8.251999999999999
- type: recall_at_1
value: 21.677
- type: recall_at_10
value: 40.069
- type: recall_at_100
value: 58.077
- type: recall_at_1000
value: 77.97
- type: recall_at_3
value: 31.03
- type: recall_at_5
value: 34.838
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 14.484
- type: map_at_10
value: 20.355
- type: map_at_100
value: 21.382
- type: map_at_1000
value: 21.511
- type: map_at_3
value: 18.448
- type: map_at_5
value: 19.451999999999998
- type: mrr_at_1
value: 17.584
- type: mrr_at_10
value: 23.825
- type: mrr_at_100
value: 24.704
- type: mrr_at_1000
value: 24.793000000000003
- type: mrr_at_3
value: 21.92
- type: mrr_at_5
value: 22.97
- type: ndcg_at_1
value: 17.584
- type: ndcg_at_10
value: 24.315
- type: ndcg_at_100
value: 29.354999999999997
- type: ndcg_at_1000
value: 32.641999999999996
- type: ndcg_at_3
value: 20.802
- type: ndcg_at_5
value: 22.335
- type: precision_at_1
value: 17.584
- type: precision_at_10
value: 4.443
- type: precision_at_100
value: 0.8160000000000001
- type: precision_at_1000
value: 0.128
- type: precision_at_3
value: 9.807
- type: precision_at_5
value: 7.0889999999999995
- type: recall_at_1
value: 14.484
- type: recall_at_10
value: 32.804
- type: recall_at_100
value: 55.679
- type: recall_at_1000
value: 79.63
- type: recall_at_3
value: 22.976
- type: recall_at_5
value: 26.939
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.983999999999998
- type: map_at_10
value: 30.812
- type: map_at_100
value: 31.938
- type: map_at_1000
value: 32.056000000000004
- type: map_at_3
value: 28.449999999999996
- type: map_at_5
value: 29.542
- type: mrr_at_1
value: 27.145999999999997
- type: mrr_at_10
value: 34.782999999999994
- type: mrr_at_100
value: 35.699
- type: mrr_at_1000
value: 35.768
- type: mrr_at_3
value: 32.572
- type: mrr_at_5
value: 33.607
- type: ndcg_at_1
value: 27.145999999999997
- type: ndcg_at_10
value: 35.722
- type: ndcg_at_100
value: 40.964
- type: ndcg_at_1000
value: 43.598
- type: ndcg_at_3
value: 31.379
- type: ndcg_at_5
value: 32.924
- type: precision_at_1
value: 27.145999999999997
- type: precision_at_10
value: 6.063000000000001
- type: precision_at_100
value: 0.9730000000000001
- type: precision_at_1000
value: 0.13
- type: precision_at_3
value: 14.366000000000001
- type: precision_at_5
value: 9.776
- type: recall_at_1
value: 22.983999999999998
- type: recall_at_10
value: 46.876
- type: recall_at_100
value: 69.646
- type: recall_at_1000
value: 88.305
- type: recall_at_3
value: 34.471000000000004
- type: recall_at_5
value: 38.76
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.017000000000003
- type: map_at_10
value: 31.049
- type: map_at_100
value: 32.582
- type: map_at_1000
value: 32.817
- type: map_at_3
value: 28.303
- type: map_at_5
value: 29.854000000000003
- type: mrr_at_1
value: 27.866000000000003
- type: mrr_at_10
value: 35.56
- type: mrr_at_100
value: 36.453
- type: mrr_at_1000
value: 36.519
- type: mrr_at_3
value: 32.938
- type: mrr_at_5
value: 34.391
- type: ndcg_at_1
value: 27.866000000000003
- type: ndcg_at_10
value: 36.506
- type: ndcg_at_100
value: 42.344
- type: ndcg_at_1000
value: 45.213
- type: ndcg_at_3
value: 31.805
- type: ndcg_at_5
value: 33.933
- type: precision_at_1
value: 27.866000000000003
- type: precision_at_10
value: 7.016
- type: precision_at_100
value: 1.468
- type: precision_at_1000
value: 0.23900000000000002
- type: precision_at_3
value: 14.822
- type: precision_at_5
value: 10.791
- type: recall_at_1
value: 23.017000000000003
- type: recall_at_10
value: 47.053
- type: recall_at_100
value: 73.177
- type: recall_at_1000
value: 91.47800000000001
- type: recall_at_3
value: 33.675
- type: recall_at_5
value: 39.36
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.673
- type: map_at_10
value: 24.051000000000002
- type: map_at_100
value: 24.933
- type: map_at_1000
value: 25.06
- type: map_at_3
value: 21.446
- type: map_at_5
value: 23.064
- type: mrr_at_1
value: 18.115000000000002
- type: mrr_at_10
value: 25.927
- type: mrr_at_100
value: 26.718999999999998
- type: mrr_at_1000
value: 26.817999999999998
- type: mrr_at_3
value: 23.383000000000003
- type: mrr_at_5
value: 25.008999999999997
- type: ndcg_at_1
value: 18.115000000000002
- type: ndcg_at_10
value: 28.669
- type: ndcg_at_100
value: 33.282000000000004
- type: ndcg_at_1000
value: 36.481
- type: ndcg_at_3
value: 23.574
- type: ndcg_at_5
value: 26.340000000000003
- type: precision_at_1
value: 18.115000000000002
- type: precision_at_10
value: 4.769
- type: precision_at_100
value: 0.767
- type: precision_at_1000
value: 0.116
- type: precision_at_3
value: 10.351
- type: precision_at_5
value: 7.8
- type: recall_at_1
value: 16.673
- type: recall_at_10
value: 41.063
- type: recall_at_100
value: 62.851
- type: recall_at_1000
value: 86.701
- type: recall_at_3
value: 27.532
- type: recall_at_5
value: 34.076
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.752
- type: map_at_10
value: 15.120000000000001
- type: map_at_100
value: 16.678
- type: map_at_1000
value: 16.854
- type: map_at_3
value: 12.603
- type: map_at_5
value: 13.918
- type: mrr_at_1
value: 19.283
- type: mrr_at_10
value: 29.145
- type: mrr_at_100
value: 30.281000000000002
- type: mrr_at_1000
value: 30.339
- type: mrr_at_3
value: 26.069
- type: mrr_at_5
value: 27.864
- type: ndcg_at_1
value: 19.283
- type: ndcg_at_10
value: 21.804000000000002
- type: ndcg_at_100
value: 28.576
- type: ndcg_at_1000
value: 32.063
- type: ndcg_at_3
value: 17.511
- type: ndcg_at_5
value: 19.112000000000002
- type: precision_at_1
value: 19.283
- type: precision_at_10
value: 6.873
- type: precision_at_100
value: 1.405
- type: precision_at_1000
value: 0.20500000000000002
- type: precision_at_3
value: 13.16
- type: precision_at_5
value: 10.189
- type: recall_at_1
value: 8.752
- type: recall_at_10
value: 27.004
- type: recall_at_100
value: 50.648
- type: recall_at_1000
value: 70.458
- type: recall_at_3
value: 16.461000000000002
- type: recall_at_5
value: 20.973
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.81
- type: map_at_10
value: 14.056
- type: map_at_100
value: 18.961
- type: map_at_1000
value: 20.169
- type: map_at_3
value: 10.496
- type: map_at_5
value: 11.952
- type: mrr_at_1
value: 53.5
- type: mrr_at_10
value: 63.479
- type: mrr_at_100
value: 63.971999999999994
- type: mrr_at_1000
value: 63.993
- type: mrr_at_3
value: 61.541999999999994
- type: mrr_at_5
value: 62.778999999999996
- type: ndcg_at_1
value: 42.25
- type: ndcg_at_10
value: 31.471
- type: ndcg_at_100
value: 35.115
- type: ndcg_at_1000
value: 42.408
- type: ndcg_at_3
value: 35.458
- type: ndcg_at_5
value: 32.973
- type: precision_at_1
value: 53.5
- type: precision_at_10
value: 24.85
- type: precision_at_100
value: 7.79
- type: precision_at_1000
value: 1.599
- type: precision_at_3
value: 38.667
- type: precision_at_5
value: 31.55
- type: recall_at_1
value: 6.81
- type: recall_at_10
value: 19.344
- type: recall_at_100
value: 40.837
- type: recall_at_1000
value: 64.661
- type: recall_at_3
value: 11.942
- type: recall_at_5
value: 14.646
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 44.64499999999999
- type: f1
value: 39.39106911352714
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 48.196
- type: map_at_10
value: 61.404
- type: map_at_100
value: 61.846000000000004
- type: map_at_1000
value: 61.866
- type: map_at_3
value: 58.975
- type: map_at_5
value: 60.525
- type: mrr_at_1
value: 52.025
- type: mrr_at_10
value: 65.43299999999999
- type: mrr_at_100
value: 65.80799999999999
- type: mrr_at_1000
value: 65.818
- type: mrr_at_3
value: 63.146
- type: mrr_at_5
value: 64.64
- type: ndcg_at_1
value: 52.025
- type: ndcg_at_10
value: 67.889
- type: ndcg_at_100
value: 69.864
- type: ndcg_at_1000
value: 70.337
- type: ndcg_at_3
value: 63.315
- type: ndcg_at_5
value: 65.91799999999999
- type: precision_at_1
value: 52.025
- type: precision_at_10
value: 9.182
- type: precision_at_100
value: 1.027
- type: precision_at_1000
value: 0.108
- type: precision_at_3
value: 25.968000000000004
- type: precision_at_5
value: 17.006
- type: recall_at_1
value: 48.196
- type: recall_at_10
value: 83.885
- type: recall_at_100
value: 92.671
- type: recall_at_1000
value: 96.018
- type: recall_at_3
value: 71.59
- type: recall_at_5
value: 77.946
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 15.193000000000001
- type: map_at_10
value: 25.168000000000003
- type: map_at_100
value: 27.017000000000003
- type: map_at_1000
value: 27.205000000000002
- type: map_at_3
value: 21.746
- type: map_at_5
value: 23.579
- type: mrr_at_1
value: 31.635999999999996
- type: mrr_at_10
value: 40.077
- type: mrr_at_100
value: 41.112
- type: mrr_at_1000
value: 41.160999999999994
- type: mrr_at_3
value: 37.937
- type: mrr_at_5
value: 39.18
- type: ndcg_at_1
value: 31.635999999999996
- type: ndcg_at_10
value: 32.298
- type: ndcg_at_100
value: 39.546
- type: ndcg_at_1000
value: 42.88
- type: ndcg_at_3
value: 29.221999999999998
- type: ndcg_at_5
value: 30.069000000000003
- type: precision_at_1
value: 31.635999999999996
- type: precision_at_10
value: 9.367
- type: precision_at_100
value: 1.645
- type: precision_at_1000
value: 0.22399999999999998
- type: precision_at_3
value: 20.01
- type: precision_at_5
value: 14.753
- type: recall_at_1
value: 15.193000000000001
- type: recall_at_10
value: 38.214999999999996
- type: recall_at_100
value: 65.95
- type: recall_at_1000
value: 85.85300000000001
- type: recall_at_3
value: 26.357000000000003
- type: recall_at_5
value: 31.319999999999997
- task:
type: Retrieval
dataset:
type: jinaai/ger_da_lir
name: MTEB GerDaLIR
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 10.363
- type: map_at_10
value: 16.222
- type: map_at_100
value: 17.28
- type: map_at_1000
value: 17.380000000000003
- type: map_at_3
value: 14.054
- type: map_at_5
value: 15.203
- type: mrr_at_1
value: 11.644
- type: mrr_at_10
value: 17.625
- type: mrr_at_100
value: 18.608
- type: mrr_at_1000
value: 18.695999999999998
- type: mrr_at_3
value: 15.481
- type: mrr_at_5
value: 16.659
- type: ndcg_at_1
value: 11.628
- type: ndcg_at_10
value: 20.028000000000002
- type: ndcg_at_100
value: 25.505
- type: ndcg_at_1000
value: 28.288000000000004
- type: ndcg_at_3
value: 15.603
- type: ndcg_at_5
value: 17.642
- type: precision_at_1
value: 11.628
- type: precision_at_10
value: 3.5589999999999997
- type: precision_at_100
value: 0.664
- type: precision_at_1000
value: 0.092
- type: precision_at_3
value: 7.109999999999999
- type: precision_at_5
value: 5.401
- type: recall_at_1
value: 10.363
- type: recall_at_10
value: 30.586000000000002
- type: recall_at_100
value: 56.43
- type: recall_at_1000
value: 78.142
- type: recall_at_3
value: 18.651
- type: recall_at_5
value: 23.493
- task:
type: Retrieval
dataset:
type: deepset/germandpr
name: MTEB GermanDPR
config: default
split: test
revision: 5129d02422a66be600ac89cd3e8531b4f97d347d
metrics:
- type: map_at_1
value: 60.78
- type: map_at_10
value: 73.91499999999999
- type: map_at_100
value: 74.089
- type: map_at_1000
value: 74.09400000000001
- type: map_at_3
value: 71.87
- type: map_at_5
value: 73.37700000000001
- type: mrr_at_1
value: 60.78
- type: mrr_at_10
value: 73.91499999999999
- type: mrr_at_100
value: 74.089
- type: mrr_at_1000
value: 74.09400000000001
- type: mrr_at_3
value: 71.87
- type: mrr_at_5
value: 73.37700000000001
- type: ndcg_at_1
value: 60.78
- type: ndcg_at_10
value: 79.35600000000001
- type: ndcg_at_100
value: 80.077
- type: ndcg_at_1000
value: 80.203
- type: ndcg_at_3
value: 75.393
- type: ndcg_at_5
value: 78.077
- type: precision_at_1
value: 60.78
- type: precision_at_10
value: 9.59
- type: precision_at_100
value: 0.9900000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 28.52
- type: precision_at_5
value: 18.4
- type: recall_at_1
value: 60.78
- type: recall_at_10
value: 95.902
- type: recall_at_100
value: 99.024
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 85.56099999999999
- type: recall_at_5
value: 92.0
- task:
type: STS
dataset:
type: jinaai/german-STSbenchmark
name: MTEB GermanSTSBenchmark
config: default
split: test
revision: 49d9b423b996fea62b483f9ee6dfb5ec233515ca
metrics:
- type: cos_sim_pearson
value: 88.49524420894356
- type: cos_sim_spearman
value: 88.32407839427714
- type: euclidean_pearson
value: 87.25098779877104
- type: euclidean_spearman
value: 88.22738098593608
- type: manhattan_pearson
value: 87.23872691839607
- type: manhattan_spearman
value: 88.2002968380165
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.81
- type: map_at_10
value: 46.238
- type: map_at_100
value: 47.141
- type: map_at_1000
value: 47.213
- type: map_at_3
value: 43.248999999999995
- type: map_at_5
value: 45.078
- type: mrr_at_1
value: 63.619
- type: mrr_at_10
value: 71.279
- type: mrr_at_100
value: 71.648
- type: mrr_at_1000
value: 71.665
- type: mrr_at_3
value: 69.76599999999999
- type: mrr_at_5
value: 70.743
- type: ndcg_at_1
value: 63.619
- type: ndcg_at_10
value: 55.38999999999999
- type: ndcg_at_100
value: 58.80800000000001
- type: ndcg_at_1000
value: 60.331999999999994
- type: ndcg_at_3
value: 50.727
- type: ndcg_at_5
value: 53.284
- type: precision_at_1
value: 63.619
- type: precision_at_10
value: 11.668000000000001
- type: precision_at_100
value: 1.434
- type: precision_at_1000
value: 0.164
- type: precision_at_3
value: 32.001000000000005
- type: precision_at_5
value: 21.223
- type: recall_at_1
value: 31.81
- type: recall_at_10
value: 58.339
- type: recall_at_100
value: 71.708
- type: recall_at_1000
value: 81.85
- type: recall_at_3
value: 48.001
- type: recall_at_5
value: 53.059
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 68.60640000000001
- type: ap
value: 62.84296904042086
- type: f1
value: 68.50643633327537
- task:
type: Reranking
dataset:
type: jinaai/miracl
name: MTEB MIRACL
config: default
split: test
revision: 8741c3b61cd36ed9ca1b3d4203543a41793239e2
metrics:
- type: map
value: 64.29704335389768
- type: mrr
value: 72.11962197159565
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.3844049247606
- type: f1
value: 89.2124328528015
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (de)
config: de
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 88.36855452240067
- type: f1
value: 87.35458822097442
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 66.48654810761514
- type: f1
value: 50.07229882504409
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (de)
config: de
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 63.832065370526905
- type: f1
value: 46.283579383385806
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (de)
config: de
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.89038332212509
- type: f1
value: 61.86279849685129
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.11230665770006
- type: f1
value: 67.44780095350535
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (de)
config: de
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.25084061869536
- type: f1
value: 71.43965023016408
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.73907195696032
- type: f1
value: 73.69920814839061
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 31.32577306498249
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 28.759349326367783
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 30.401342674703425
- type: mrr
value: 31.384379585660987
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.855
- type: map_at_10
value: 10.01
- type: map_at_100
value: 12.461
- type: map_at_1000
value: 13.776
- type: map_at_3
value: 7.252
- type: map_at_5
value: 8.679
- type: mrr_at_1
value: 41.176
- type: mrr_at_10
value: 49.323
- type: mrr_at_100
value: 49.954
- type: mrr_at_1000
value: 49.997
- type: mrr_at_3
value: 46.904
- type: mrr_at_5
value: 48.375
- type: ndcg_at_1
value: 39.318999999999996
- type: ndcg_at_10
value: 28.607
- type: ndcg_at_100
value: 26.554
- type: ndcg_at_1000
value: 35.731
- type: ndcg_at_3
value: 32.897999999999996
- type: ndcg_at_5
value: 31.53
- type: precision_at_1
value: 41.176
- type: precision_at_10
value: 20.867
- type: precision_at_100
value: 6.796
- type: precision_at_1000
value: 1.983
- type: precision_at_3
value: 30.547
- type: precision_at_5
value: 27.245
- type: recall_at_1
value: 4.855
- type: recall_at_10
value: 14.08
- type: recall_at_100
value: 28.188000000000002
- type: recall_at_1000
value: 60.07900000000001
- type: recall_at_3
value: 7.947
- type: recall_at_5
value: 10.786
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.906999999999996
- type: map_at_10
value: 41.147
- type: map_at_100
value: 42.269
- type: map_at_1000
value: 42.308
- type: map_at_3
value: 36.638999999999996
- type: map_at_5
value: 39.285
- type: mrr_at_1
value: 30.359
- type: mrr_at_10
value: 43.607
- type: mrr_at_100
value: 44.454
- type: mrr_at_1000
value: 44.481
- type: mrr_at_3
value: 39.644
- type: mrr_at_5
value: 42.061
- type: ndcg_at_1
value: 30.330000000000002
- type: ndcg_at_10
value: 48.899
- type: ndcg_at_100
value: 53.612
- type: ndcg_at_1000
value: 54.51200000000001
- type: ndcg_at_3
value: 40.262
- type: ndcg_at_5
value: 44.787
- type: precision_at_1
value: 30.330000000000002
- type: precision_at_10
value: 8.323
- type: precision_at_100
value: 1.0959999999999999
- type: precision_at_1000
value: 0.11800000000000001
- type: precision_at_3
value: 18.395
- type: precision_at_5
value: 13.627
- type: recall_at_1
value: 26.906999999999996
- type: recall_at_10
value: 70.215
- type: recall_at_100
value: 90.61200000000001
- type: recall_at_1000
value: 97.294
- type: recall_at_3
value: 47.784
- type: recall_at_5
value: 58.251
- task:
type: PairClassification
dataset:
type: paws-x
name: MTEB PawsX
config: default
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 60.5
- type: cos_sim_ap
value: 57.606096528877494
- type: cos_sim_f1
value: 62.24240307369892
- type: cos_sim_precision
value: 45.27439024390244
- type: cos_sim_recall
value: 99.55307262569832
- type: dot_accuracy
value: 57.699999999999996
- type: dot_ap
value: 51.289351057160616
- type: dot_f1
value: 62.25953130465197
- type: dot_precision
value: 45.31568228105906
- type: dot_recall
value: 99.4413407821229
- type: euclidean_accuracy
value: 60.45
- type: euclidean_ap
value: 57.616461421424034
- type: euclidean_f1
value: 62.313697657913416
- type: euclidean_precision
value: 45.657826313052524
- type: euclidean_recall
value: 98.10055865921787
- type: manhattan_accuracy
value: 60.3
- type: manhattan_ap
value: 57.580565271667325
- type: manhattan_f1
value: 62.24240307369892
- type: manhattan_precision
value: 45.27439024390244
- type: manhattan_recall
value: 99.55307262569832
- type: max_accuracy
value: 60.5
- type: max_ap
value: 57.616461421424034
- type: max_f1
value: 62.313697657913416
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 70.21300000000001
- type: map_at_10
value: 84.136
- type: map_at_100
value: 84.796
- type: map_at_1000
value: 84.812
- type: map_at_3
value: 81.182
- type: map_at_5
value: 83.027
- type: mrr_at_1
value: 80.91000000000001
- type: mrr_at_10
value: 87.155
- type: mrr_at_100
value: 87.27000000000001
- type: mrr_at_1000
value: 87.271
- type: mrr_at_3
value: 86.158
- type: mrr_at_5
value: 86.828
- type: ndcg_at_1
value: 80.88
- type: ndcg_at_10
value: 87.926
- type: ndcg_at_100
value: 89.223
- type: ndcg_at_1000
value: 89.321
- type: ndcg_at_3
value: 85.036
- type: ndcg_at_5
value: 86.614
- type: precision_at_1
value: 80.88
- type: precision_at_10
value: 13.350000000000001
- type: precision_at_100
value: 1.5310000000000001
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.173
- type: precision_at_5
value: 24.476
- type: recall_at_1
value: 70.21300000000001
- type: recall_at_10
value: 95.12
- type: recall_at_100
value: 99.535
- type: recall_at_1000
value: 99.977
- type: recall_at_3
value: 86.833
- type: recall_at_5
value: 91.26100000000001
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 47.754688783184875
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 54.875736374329364
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.773
- type: map_at_10
value: 9.447
- type: map_at_100
value: 11.1
- type: map_at_1000
value: 11.37
- type: map_at_3
value: 6.787
- type: map_at_5
value: 8.077
- type: mrr_at_1
value: 18.5
- type: mrr_at_10
value: 28.227000000000004
- type: mrr_at_100
value: 29.445
- type: mrr_at_1000
value: 29.515
- type: mrr_at_3
value: 25.2
- type: mrr_at_5
value: 27.055
- type: ndcg_at_1
value: 18.5
- type: ndcg_at_10
value: 16.29
- type: ndcg_at_100
value: 23.250999999999998
- type: ndcg_at_1000
value: 28.445999999999998
- type: ndcg_at_3
value: 15.376000000000001
- type: ndcg_at_5
value: 13.528
- type: precision_at_1
value: 18.5
- type: precision_at_10
value: 8.51
- type: precision_at_100
value: 1.855
- type: precision_at_1000
value: 0.311
- type: precision_at_3
value: 14.533
- type: precision_at_5
value: 12.0
- type: recall_at_1
value: 3.773
- type: recall_at_10
value: 17.282
- type: recall_at_100
value: 37.645
- type: recall_at_1000
value: 63.138000000000005
- type: recall_at_3
value: 8.853
- type: recall_at_5
value: 12.168
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 85.32789517976525
- type: cos_sim_spearman
value: 80.32750384145629
- type: euclidean_pearson
value: 81.5025131452508
- type: euclidean_spearman
value: 80.24797115147175
- type: manhattan_pearson
value: 81.51634463412002
- type: manhattan_spearman
value: 80.24614721495055
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 88.47050448992432
- type: cos_sim_spearman
value: 80.58919997743621
- type: euclidean_pearson
value: 85.83258918113664
- type: euclidean_spearman
value: 80.97441389240902
- type: manhattan_pearson
value: 85.7798262013878
- type: manhattan_spearman
value: 80.97208703064196
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 85.95341439711532
- type: cos_sim_spearman
value: 86.59127484634989
- type: euclidean_pearson
value: 85.57850603454227
- type: euclidean_spearman
value: 86.47130477363419
- type: manhattan_pearson
value: 85.59387925447652
- type: manhattan_spearman
value: 86.50665427391583
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 85.39810909161844
- type: cos_sim_spearman
value: 82.98595295546008
- type: euclidean_pearson
value: 84.04681129969951
- type: euclidean_spearman
value: 82.98197460689866
- type: manhattan_pearson
value: 83.9918798171185
- type: manhattan_spearman
value: 82.91148131768082
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 88.02072712147692
- type: cos_sim_spearman
value: 88.78821332623012
- type: euclidean_pearson
value: 88.12132045572747
- type: euclidean_spearman
value: 88.74273451067364
- type: manhattan_pearson
value: 88.05431550059166
- type: manhattan_spearman
value: 88.67610233020723
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 82.96134704624787
- type: cos_sim_spearman
value: 84.44062976314666
- type: euclidean_pearson
value: 84.03642536310323
- type: euclidean_spearman
value: 84.4535014579785
- type: manhattan_pearson
value: 83.92874228901483
- type: manhattan_spearman
value: 84.33634314951631
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-de)
config: en-de
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.3154168064887
- type: cos_sim_spearman
value: 86.72393652571682
- type: euclidean_pearson
value: 86.04193246174164
- type: euclidean_spearman
value: 86.30482896608093
- type: manhattan_pearson
value: 85.95524084651859
- type: manhattan_spearman
value: 86.06031431994282
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 89.91079682750804
- type: cos_sim_spearman
value: 89.30961836617064
- type: euclidean_pearson
value: 88.86249564158628
- type: euclidean_spearman
value: 89.04772899592396
- type: manhattan_pearson
value: 88.85579791315043
- type: manhattan_spearman
value: 88.94190462541333
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 67.00558145551088
- type: cos_sim_spearman
value: 67.96601170393878
- type: euclidean_pearson
value: 67.87627043214336
- type: euclidean_spearman
value: 66.76402572303859
- type: manhattan_pearson
value: 67.88306560555452
- type: manhattan_spearman
value: 66.6273862035506
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de)
config: de
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 50.83759332748726
- type: cos_sim_spearman
value: 59.066344562858006
- type: euclidean_pearson
value: 50.08955848154131
- type: euclidean_spearman
value: 58.36517305855221
- type: manhattan_pearson
value: 50.05257267223111
- type: manhattan_spearman
value: 58.37570252804986
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de-en)
config: de-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 59.22749007956492
- type: cos_sim_spearman
value: 55.97282077657827
- type: euclidean_pearson
value: 62.10661533695752
- type: euclidean_spearman
value: 53.62780854854067
- type: manhattan_pearson
value: 62.37138085709719
- type: manhattan_spearman
value: 54.17556356828155
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 87.91145397065878
- type: cos_sim_spearman
value: 88.13960018389005
- type: euclidean_pearson
value: 87.67618876224006
- type: euclidean_spearman
value: 87.99119480810556
- type: manhattan_pearson
value: 87.67920297334753
- type: manhattan_spearman
value: 87.99113250064492
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 78.09133563707582
- type: mrr
value: 93.2415288052543
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 47.760999999999996
- type: map_at_10
value: 56.424
- type: map_at_100
value: 57.24399999999999
- type: map_at_1000
value: 57.278
- type: map_at_3
value: 53.68000000000001
- type: map_at_5
value: 55.442
- type: mrr_at_1
value: 50.666999999999994
- type: mrr_at_10
value: 58.012
- type: mrr_at_100
value: 58.736
- type: mrr_at_1000
value: 58.769000000000005
- type: mrr_at_3
value: 56.056
- type: mrr_at_5
value: 57.321999999999996
- type: ndcg_at_1
value: 50.666999999999994
- type: ndcg_at_10
value: 60.67700000000001
- type: ndcg_at_100
value: 64.513
- type: ndcg_at_1000
value: 65.62400000000001
- type: ndcg_at_3
value: 56.186
- type: ndcg_at_5
value: 58.692
- type: precision_at_1
value: 50.666999999999994
- type: precision_at_10
value: 8.200000000000001
- type: precision_at_100
value: 1.023
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 21.889
- type: precision_at_5
value: 14.866999999999999
- type: recall_at_1
value: 47.760999999999996
- type: recall_at_10
value: 72.006
- type: recall_at_100
value: 89.767
- type: recall_at_1000
value: 98.833
- type: recall_at_3
value: 60.211000000000006
- type: recall_at_5
value: 66.3
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.79009900990098
- type: cos_sim_ap
value: 94.86690691995835
- type: cos_sim_f1
value: 89.37875751503007
- type: cos_sim_precision
value: 89.5582329317269
- type: cos_sim_recall
value: 89.2
- type: dot_accuracy
value: 99.76336633663367
- type: dot_ap
value: 94.26453740761586
- type: dot_f1
value: 88.00783162016641
- type: dot_precision
value: 86.19367209971237
- type: dot_recall
value: 89.9
- type: euclidean_accuracy
value: 99.7940594059406
- type: euclidean_ap
value: 94.85459757524379
- type: euclidean_f1
value: 89.62779156327544
- type: euclidean_precision
value: 88.96551724137932
- type: euclidean_recall
value: 90.3
- type: manhattan_accuracy
value: 99.79009900990098
- type: manhattan_ap
value: 94.76971336654465
- type: manhattan_f1
value: 89.35323383084577
- type: manhattan_precision
value: 88.91089108910892
- type: manhattan_recall
value: 89.8
- type: max_accuracy
value: 99.7940594059406
- type: max_ap
value: 94.86690691995835
- type: max_f1
value: 89.62779156327544
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 55.38197670064987
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 33.08330158937971
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 49.50367079063226
- type: mrr
value: 50.30444943128768
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.37739520909561
- type: cos_sim_spearman
value: 31.548500943973913
- type: dot_pearson
value: 29.983610104303
- type: dot_spearman
value: 29.90185869098618
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.198
- type: map_at_10
value: 1.5810000000000002
- type: map_at_100
value: 9.064
- type: map_at_1000
value: 22.161
- type: map_at_3
value: 0.536
- type: map_at_5
value: 0.8370000000000001
- type: mrr_at_1
value: 80.0
- type: mrr_at_10
value: 86.75
- type: mrr_at_100
value: 86.799
- type: mrr_at_1000
value: 86.799
- type: mrr_at_3
value: 85.0
- type: mrr_at_5
value: 86.5
- type: ndcg_at_1
value: 73.0
- type: ndcg_at_10
value: 65.122
- type: ndcg_at_100
value: 51.853
- type: ndcg_at_1000
value: 47.275
- type: ndcg_at_3
value: 66.274
- type: ndcg_at_5
value: 64.826
- type: precision_at_1
value: 80.0
- type: precision_at_10
value: 70.19999999999999
- type: precision_at_100
value: 53.480000000000004
- type: precision_at_1000
value: 20.946
- type: precision_at_3
value: 71.333
- type: precision_at_5
value: 70.0
- type: recall_at_1
value: 0.198
- type: recall_at_10
value: 1.884
- type: recall_at_100
value: 12.57
- type: recall_at_1000
value: 44.208999999999996
- type: recall_at_3
value: 0.5890000000000001
- type: recall_at_5
value: 0.95
- task:
type: Clustering
dataset:
type: slvnwhrl/tenkgnad-clustering-p2p
name: MTEB TenKGnadClusteringP2P
config: default
split: test
revision: 5c59e41555244b7e45c9a6be2d720ab4bafae558
metrics:
- type: v_measure
value: 42.84199261133083
- task:
type: Clustering
dataset:
type: slvnwhrl/tenkgnad-clustering-s2s
name: MTEB TenKGnadClusteringS2S
config: default
split: test
revision: 6cddbe003f12b9b140aec477b583ac4191f01786
metrics:
- type: v_measure
value: 23.689557114798838
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 1.941
- type: map_at_10
value: 8.222
- type: map_at_100
value: 14.277999999999999
- type: map_at_1000
value: 15.790000000000001
- type: map_at_3
value: 4.4670000000000005
- type: map_at_5
value: 5.762
- type: mrr_at_1
value: 24.490000000000002
- type: mrr_at_10
value: 38.784
- type: mrr_at_100
value: 39.724
- type: mrr_at_1000
value: 39.724
- type: mrr_at_3
value: 33.333
- type: mrr_at_5
value: 37.415
- type: ndcg_at_1
value: 22.448999999999998
- type: ndcg_at_10
value: 21.026
- type: ndcg_at_100
value: 33.721000000000004
- type: ndcg_at_1000
value: 45.045
- type: ndcg_at_3
value: 20.053
- type: ndcg_at_5
value: 20.09
- type: precision_at_1
value: 24.490000000000002
- type: precision_at_10
value: 19.796
- type: precision_at_100
value: 7.469
- type: precision_at_1000
value: 1.48
- type: precision_at_3
value: 21.769
- type: precision_at_5
value: 21.224
- type: recall_at_1
value: 1.941
- type: recall_at_10
value: 14.915999999999999
- type: recall_at_100
value: 46.155
- type: recall_at_1000
value: 80.664
- type: recall_at_3
value: 5.629
- type: recall_at_5
value: 8.437
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 69.64800000000001
- type: ap
value: 12.914826731261094
- type: f1
value: 53.05213503422915
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 60.427277872099594
- type: f1
value: 60.78292007556828
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 40.48134168406559
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 84.79465935506944
- type: cos_sim_ap
value: 70.24589055290592
- type: cos_sim_f1
value: 65.0994575045208
- type: cos_sim_precision
value: 63.76518218623482
- type: cos_sim_recall
value: 66.49076517150397
- type: dot_accuracy
value: 84.63968528342374
- type: dot_ap
value: 69.84683095084355
- type: dot_f1
value: 64.50606169727523
- type: dot_precision
value: 59.1719885487778
- type: dot_recall
value: 70.89709762532982
- type: euclidean_accuracy
value: 84.76485664898374
- type: euclidean_ap
value: 70.20556438685551
- type: euclidean_f1
value: 65.06796614516543
- type: euclidean_precision
value: 63.29840319361277
- type: euclidean_recall
value: 66.93931398416886
- type: manhattan_accuracy
value: 84.72313286046374
- type: manhattan_ap
value: 70.17151475534308
- type: manhattan_f1
value: 65.31379180759113
- type: manhattan_precision
value: 62.17505366086334
- type: manhattan_recall
value: 68.7862796833773
- type: max_accuracy
value: 84.79465935506944
- type: max_ap
value: 70.24589055290592
- type: max_f1
value: 65.31379180759113
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.95874568246207
- type: cos_sim_ap
value: 85.82517548264127
- type: cos_sim_f1
value: 78.22288041466125
- type: cos_sim_precision
value: 75.33875338753387
- type: cos_sim_recall
value: 81.33661841700031
- type: dot_accuracy
value: 88.836496293709
- type: dot_ap
value: 85.53430720252186
- type: dot_f1
value: 78.10616085869725
- type: dot_precision
value: 74.73269555430501
- type: dot_recall
value: 81.79858330766862
- type: euclidean_accuracy
value: 88.92769821865176
- type: euclidean_ap
value: 85.65904346964223
- type: euclidean_f1
value: 77.98774074208407
- type: euclidean_precision
value: 73.72282795035315
- type: euclidean_recall
value: 82.77640899291654
- type: manhattan_accuracy
value: 88.86366282454303
- type: manhattan_ap
value: 85.61599642231819
- type: manhattan_f1
value: 78.01480509061737
- type: manhattan_precision
value: 74.10460685833044
- type: manhattan_recall
value: 82.36064059131506
- type: max_accuracy
value: 88.95874568246207
- type: max_ap
value: 85.82517548264127
- type: max_f1
value: 78.22288041466125
- task:
type: Retrieval
dataset:
type: None
name: MTEB WikiCLIR
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.9539999999999997
- type: map_at_10
value: 7.407
- type: map_at_100
value: 8.677999999999999
- type: map_at_1000
value: 9.077
- type: map_at_3
value: 5.987
- type: map_at_5
value: 6.6979999999999995
- type: mrr_at_1
value: 35.65
- type: mrr_at_10
value: 45.097
- type: mrr_at_100
value: 45.83
- type: mrr_at_1000
value: 45.871
- type: mrr_at_3
value: 42.63
- type: mrr_at_5
value: 44.104
- type: ndcg_at_1
value: 29.215000000000003
- type: ndcg_at_10
value: 22.694
- type: ndcg_at_100
value: 22.242
- type: ndcg_at_1000
value: 27.069
- type: ndcg_at_3
value: 27.641
- type: ndcg_at_5
value: 25.503999999999998
- type: precision_at_1
value: 35.65
- type: precision_at_10
value: 12.795000000000002
- type: precision_at_100
value: 3.354
- type: precision_at_1000
value: 0.743
- type: precision_at_3
value: 23.403
- type: precision_at_5
value: 18.474
- type: recall_at_1
value: 3.9539999999999997
- type: recall_at_10
value: 11.301
- type: recall_at_100
value: 22.919999999999998
- type: recall_at_1000
value: 40.146
- type: recall_at_3
value: 7.146
- type: recall_at_5
value: 8.844000000000001
- task:
type: Retrieval
dataset:
type: jinaai/xmarket_de
name: MTEB XMarket
config: default
split: test
revision: 2336818db4c06570fcdf263e1bcb9993b786f67a
metrics:
- type: map_at_1
value: 4.872
- type: map_at_10
value: 10.658
- type: map_at_100
value: 13.422999999999998
- type: map_at_1000
value: 14.245
- type: map_at_3
value: 7.857
- type: map_at_5
value: 9.142999999999999
- type: mrr_at_1
value: 16.744999999999997
- type: mrr_at_10
value: 24.416
- type: mrr_at_100
value: 25.432
- type: mrr_at_1000
value: 25.502999999999997
- type: mrr_at_3
value: 22.096
- type: mrr_at_5
value: 23.421
- type: ndcg_at_1
value: 16.695999999999998
- type: ndcg_at_10
value: 18.66
- type: ndcg_at_100
value: 24.314
- type: ndcg_at_1000
value: 29.846
- type: ndcg_at_3
value: 17.041999999999998
- type: ndcg_at_5
value: 17.585
- type: precision_at_1
value: 16.695999999999998
- type: precision_at_10
value: 10.374
- type: precision_at_100
value: 3.988
- type: precision_at_1000
value: 1.1860000000000002
- type: precision_at_3
value: 14.21
- type: precision_at_5
value: 12.623000000000001
- type: recall_at_1
value: 4.872
- type: recall_at_10
value: 18.624
- type: recall_at_100
value: 40.988
- type: recall_at_1000
value: 65.33
- type: recall_at_3
value: 10.162
- type: recall_at_5
value: 13.517999999999999
---
The text embedding set trained by Jina AI.
## Quick Start The easiest way to starting using `jina-embeddings-v2-base-de` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/). ## Intended Usage & Model Info `jina-embeddings-v2-base-de` is a German/English bilingual text **embedding model** supporting **8192 sequence length**. It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length. We have designed it for high performance in mono-lingual & cross-lingual applications and trained it specifically to support mixed German-English input without bias. Additionally, we provide the following embedding models: `jina-embeddings-v2-base-de` ist ein zweisprachiges **Text Embedding Modell** für Deutsch und Englisch, welches Texteingaben mit einer Länge von bis zu **8192 Token unterstützt**. Es basiert auf der adaptierten Bert-Modell-Architektur JinaBERT, welche mithilfe einer symmetrische Variante von [ALiBi](https://arxiv.org/abs/2108.12409) längere Eingabetexte erlaubt. Wir haben, das Model für hohe Performance in einsprachigen und cross-lingual Anwendungen entwickelt und speziell darauf trainiert, gemischte deutsch-englische Eingaben ohne einen Bias zu kodieren. Des Weiteren stellen wir folgende Embedding-Modelle bereit: - [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters. - [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters. - [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): 161 million parameters Chinese-English Bilingual embeddings. - [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): 161 million parameters German-English Bilingual embeddings **(you are here)**. - [`jina-embeddings-v2-base-es`](): Spanish-English Bilingual embeddings (soon). - [`jina-embeddings-v2-base-code`](https://huggingface.co/jinaai/jina-embeddings-v2-base-code): 161 million parameters code embeddings. ## Data & Parameters The data and training details are described in this [technical report](https://arxiv.org/abs/2402.17016). ## Usage **### Why mean pooling? `mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level. It has been proved to be the most effective way to produce high-quality sentence embeddings. We offer an `encode` function to deal with this. However, if you would like to do it without using the default `encode` function: ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ['How is the weather today?', 'What is the current weather like today?'] tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-de') model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True) encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) embeddings = mean_pooling(model_output, encoded_input['attention_mask']) embeddings = F.normalize(embeddings, p=2, dim=1) ```