--- pipeline_tag: sentence-similarity tags: - finetuner - feature-extraction - sentence-similarity datasets: - jinaai/negation-dataset language: en license: apache-2.0 ---

Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications.

The text embedding suit trained by Jina AI, Finetuner team.

## Intented Usage & Model Info `jina-embedding-b-en-v1` is a language model that has been trained using Jina AI's Linnaeus-Clean dataset. This dataset consists of 380 million pairs of sentences, which include both query-document pairs. These pairs were obtained from various domains and were carefully selected through a thorough cleaning process. The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs. The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more. With a standard size of 110 million parameters, the model enables fast inference while delivering better performance than our small model. It is recommended to use a single GPU for inference. Additionally, we provide the following options: - `jina-embedding-s-en-v1`: 35 million parameters. - `jina-embedding-b-en-v1`: 110 million parameters **(you are here)**. - `jina-embedding-l-en-v1`: 330 million parameters. - `jina-embedding-xl-en-v1`: 1.2 billion parameters (soon). - `jina-embedding-xxl-en-v1`: 6 billion parameters (soon). ## Data & Parameters More info will be released together with the technique report. ## Metrics We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert and `text-embeddings-ada-002` from OpenAI: |Name|param |context| |------------------------------|-----|------| |all-minilm-l6-v2|33m |128| |all-mpnet-base-v2 |110m |128| |ada-embedding-002|Unknown/OpenAI API |8192| |jina-embedding-s-en-v1|35m |512| |jina-embedding-b-en-v1|110m |512| |jina-embedding-l-en-v1|330m |512| |Name|STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact| |------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-----| |all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 | |all-mpnet-base-v2|0.726|0.835|**0.78** |0.857|0.8 |**0.906**|0.513 |0.875|0.656 | |ada-embedding-002|0.698|0.833|0.761|0.861|**0.86** |0.903|**0.685** |0.876|**0.726** | |jina-embedding-s-en-v1|0.736|0.78|0.745|0.84|0.79|0.868|0.484 |0.856|0.606 | |jina-embedding-b-en-v1|**0.74**|0.792|0.752|0.851|0.801|0.88|0.505 |0.871|0.64 | |jina-embedding-l-en-v1|0.739|**0.844**|0.778|**0.863**|0.829|0.896|0.526 |**0.882**|0.652 | For more tasks and metrics, please checkout [MTEB](https://huggingface.co/spaces/mteb/leaderboard) benchmark. ## Usage ```python !pip install finetuner import finetuner model = finetuner.build_model('jinaai/jina-embedding-b-en-v1') embeddings = finetuner.encode( model=model, data=['how is the weather today', 'What is the current weather like today?'] ) print(finetuner.cos_sim(embeddings[0], embeddings[1])) ``` ## Fine-tuning Please consider [Finetuner](https://github.com/jina-ai/finetuner). ## Plans 1. The development of `jina-embedding-s-en-v2` is currently underway with two main objectives: improving performance and increasing the maximum sequence length. 2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called `jina-embedding-s/b/l-de-v1`. ## Contact Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.