import numbers import random import warnings from dataclasses import asdict, dataclass from typing import Any, Dict, List, Optional, Sequence, Tuple, Union import torch import torchvision.transforms.functional as F from torchvision.transforms import ( CenterCrop, ColorJitter, Compose, Grayscale, InterpolationMode, Normalize, RandomResizedCrop, Resize, ToTensor, ) from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD OPENAI_DATASET_MEAN = tuple(OPENAI_CLIP_MEAN) OPENAI_DATASET_STD = tuple(OPENAI_CLIP_STD) @dataclass class PreprocessCfg: size: Union[int, Tuple[int, int]] = 224 mode: str = 'RGB' mean: Tuple[float, ...] = OPENAI_DATASET_MEAN std: Tuple[float, ...] = OPENAI_DATASET_STD interpolation: str = 'bicubic' resize_mode: str = 'shortest' fill_color: int = 0 def __post_init__(self): assert self.mode in ('RGB',) @property def num_channels(self): return 3 @property def input_size(self): return (self.num_channels,) + (self.size, self.size) _PREPROCESS_KEYS = set(asdict(PreprocessCfg()).keys()) def merge_preprocess_dict( base: Union[PreprocessCfg, Dict], overlay: Dict, ): """Merge overlay key-value pairs on top of base preprocess cfg or dict. Input dicts are filtered based on PreprocessCfg fields. """ if isinstance(base, PreprocessCfg): base_clean = asdict(base) else: base_clean = {k: v for k, v in base.items() if k in _PREPROCESS_KEYS} if overlay: overlay_clean = { k: v for k, v in overlay.items() if k in _PREPROCESS_KEYS and v is not None } base_clean.update(overlay_clean) return base_clean def merge_preprocess_kwargs(base: Union[PreprocessCfg, Dict], **kwargs): return merge_preprocess_dict(base, kwargs) @dataclass class AugmentationCfg: scale: Tuple[float, float] = (0.9, 1.0) ratio: Optional[Tuple[float, float]] = None color_jitter: Optional[ Union[float, Tuple[float, float, float], Tuple[float, float, float, float]] ] = None re_prob: Optional[float] = None re_count: Optional[int] = None use_timm: bool = False # params for simclr_jitter_gray color_jitter_prob: float = None gray_scale_prob: float = None def _setup_size(size, error_msg): if isinstance(size, numbers.Number): return int(size), int(size) if isinstance(size, Sequence) and len(size) == 1: return size[0], size[0] if len(size) != 2: raise ValueError(error_msg) return size class ResizeKeepRatio: """Resize and Keep Ratio Copy & paste from `timm` """ def __init__( self, size, longest=0.0, interpolation=InterpolationMode.BICUBIC, random_scale_prob=0.0, random_scale_range=(0.85, 1.05), random_aspect_prob=0.0, random_aspect_range=(0.9, 1.11), ): if isinstance(size, (list, tuple)): self.size = tuple(size) else: self.size = (size, size) self.interpolation = interpolation self.longest = float(longest) # [0, 1] where 0 == shortest edge, 1 == longest self.random_scale_prob = random_scale_prob self.random_scale_range = random_scale_range self.random_aspect_prob = random_aspect_prob self.random_aspect_range = random_aspect_range @staticmethod def get_params( img, target_size, longest, random_scale_prob=0.0, random_scale_range=(0.85, 1.05), random_aspect_prob=0.0, random_aspect_range=(0.9, 1.11), ): """Get parameters""" source_size = img.size[::-1] # h, w h, w = source_size target_h, target_w = target_size ratio_h = h / target_h ratio_w = w / target_w ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * ( 1.0 - longest ) if random_scale_prob > 0 and random.random() < random_scale_prob: ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1]) ratio_factor = (ratio_factor, ratio_factor) else: ratio_factor = (1.0, 1.0) if random_aspect_prob > 0 and random.random() < random_aspect_prob: aspect_factor = random.uniform( random_aspect_range[0], random_aspect_range[1] ) ratio_factor = ( ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor, ) size = [round(x * f / ratio) for x, f in zip(source_size, ratio_factor)] return size def __call__(self, img): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size """ size = self.get_params( img, self.size, self.longest, self.random_scale_prob, self.random_scale_range, self.random_aspect_prob, self.random_aspect_range, ) img = F.resize(img, size, self.interpolation) return img def __repr__(self): format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += f', interpolation={self.interpolation})' format_string += f', longest={self.longest:.3f})' return format_string def center_crop_or_pad( img: torch.Tensor, output_size: List[int], fill=0 ) -> torch.Tensor: """Center crops and/or pads the given image. If the image is torch Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. If image size is smaller than output size along any edge, image is padded with 0 and then center cropped. Args: img (PIL Image or Tensor): Image to be cropped. output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int, it is used for both directions. fill (int, Tuple[int]): Padding color Returns: PIL Image or Tensor: Cropped image. """ if isinstance(output_size, numbers.Number): output_size = (int(output_size), int(output_size)) elif isinstance(output_size, (tuple, list)) and len(output_size) == 1: output_size = (output_size[0], output_size[0]) _, image_height, image_width = F.get_dimensions(img) crop_height, crop_width = output_size if crop_width > image_width or crop_height > image_height: padding_ltrb = [ (crop_width - image_width) // 2 if crop_width > image_width else 0, (crop_height - image_height) // 2 if crop_height > image_height else 0, (crop_width - image_width + 1) // 2 if crop_width > image_width else 0, (crop_height - image_height + 1) // 2 if crop_height > image_height else 0, ] img = F.pad(img, padding_ltrb, fill=fill) _, image_height, image_width = F.get_dimensions(img) if crop_width == image_width and crop_height == image_height: return img crop_top = int(round((image_height - crop_height) / 2.0)) crop_left = int(round((image_width - crop_width) / 2.0)) return F.crop(img, crop_top, crop_left, crop_height, crop_width) class CenterCropOrPad(torch.nn.Module): """Crops the given image at the center. If the image is torch Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. If image size is smaller than output size along any edge, image is padded with 0 and then center cropped. Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]). """ def __init__(self, size, fill=0): super().__init__() self.size = _setup_size( size, error_msg='Please provide only two dimensions (h, w) for size.' ) self.fill = fill def forward(self, img): """ Args: img (PIL Image or Tensor): Image to be cropped. Returns: PIL Image or Tensor: Cropped image. """ return center_crop_or_pad(img, self.size, fill=self.fill) def __repr__(self) -> str: return f'{self.__class__.__name__}(size={self.size})' def _convert_to_rgb(image): return image.convert('RGB') class _ColorJitter(object): """ Apply Color Jitter to the PIL image with a specified probability. """ def __init__(self, brightness=0.0, contrast=0.0, saturation=0.0, hue=0.0, p=0.8): assert 0.0 <= p <= 1.0 self.p = p self.transf = ColorJitter( brightness=brightness, contrast=contrast, saturation=saturation, hue=hue ) def __call__(self, img): if random.random() < self.p: return self.transf(img) else: return img class _GrayScale(object): """ Apply Gray Scale to the PIL image with a specified probability. """ def __init__(self, p=0.2): assert 0.0 <= p <= 1.0 self.p = p self.transf = Grayscale(num_output_channels=3) def __call__(self, img): if random.random() < self.p: return self.transf(img) else: return img def image_transform( image_size: Union[int, Tuple[int, int]], is_train: bool, mean: Optional[Tuple[float, ...]] = None, std: Optional[Tuple[float, ...]] = None, resize_mode: Optional[str] = None, interpolation: Optional[str] = None, fill_color: int = 0, aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None, ): mean = mean or OPENAI_DATASET_MEAN if not isinstance(mean, (list, tuple)): mean = (mean,) * 3 std = std or OPENAI_DATASET_STD if not isinstance(std, (list, tuple)): std = (std,) * 3 interpolation = interpolation or 'bicubic' assert interpolation in ['bicubic', 'bilinear', 'random'] # NOTE random is ignored for interpolation_mode, so defaults to BICUBIC for # inference if set interpolation_mode = ( InterpolationMode.BILINEAR if interpolation == 'bilinear' else InterpolationMode.BICUBIC ) resize_mode = resize_mode or 'shortest' assert resize_mode in ('shortest', 'longest', 'squash') if isinstance(aug_cfg, dict): aug_cfg = AugmentationCfg(**aug_cfg) else: aug_cfg = aug_cfg or AugmentationCfg() normalize = Normalize(mean=mean, std=std) if is_train: aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None} use_timm = aug_cfg_dict.pop('use_timm', False) if use_timm: from timm.data import create_transform # timm can still be optional if isinstance(image_size, (tuple, list)): assert len(image_size) >= 2 input_size = (3,) + image_size[-2:] else: input_size = (3, image_size, image_size) aug_cfg_dict.setdefault('color_jitter', None) # disable by default # drop extra non-timm items aug_cfg_dict.pop('color_jitter_prob', None) aug_cfg_dict.pop('gray_scale_prob', None) train_transform = create_transform( input_size=input_size, is_training=True, hflip=0.0, mean=mean, std=std, re_mode='pixel', interpolation=interpolation, **aug_cfg_dict, ) else: train_transform = [ RandomResizedCrop( image_size, scale=aug_cfg_dict.pop('scale'), interpolation=InterpolationMode.BICUBIC, ), _convert_to_rgb, ] if aug_cfg.color_jitter_prob: assert ( aug_cfg.color_jitter is not None and len(aug_cfg.color_jitter) == 4 ) train_transform.extend( [_ColorJitter(*aug_cfg.color_jitter, p=aug_cfg.color_jitter_prob)] ) if aug_cfg.gray_scale_prob: train_transform.extend([_GrayScale(aug_cfg.gray_scale_prob)]) train_transform.extend( [ ToTensor(), normalize, ] ) train_transform = Compose(train_transform) if aug_cfg_dict: warnings.warn( f'Unused augmentation cfg items, specify `use_timm` to use ' f'({list(aug_cfg_dict.keys())}).' ) return train_transform else: if resize_mode == 'longest': transforms = [ ResizeKeepRatio( image_size, interpolation=interpolation_mode, longest=1 ), CenterCropOrPad(image_size, fill=fill_color), ] elif resize_mode == 'squash': if isinstance(image_size, int): image_size = (image_size, image_size) transforms = [ Resize(image_size, interpolation=interpolation_mode), ] else: assert resize_mode == 'shortest' if not isinstance(image_size, (tuple, list)): image_size = (image_size, image_size) if image_size[0] == image_size[1]: # simple case, use torchvision built-in Resize w/ shortest edge mode # (scalar size arg) transforms = [Resize(image_size[0], interpolation=interpolation_mode)] else: # resize shortest edge to matching target dim for non-square target transforms = [ResizeKeepRatio(image_size)] transforms += [CenterCrop(image_size)] transforms.extend( [ _convert_to_rgb, ToTensor(), normalize, ] ) return Compose(transforms) def image_transform_v2( cfg: PreprocessCfg, is_train: bool, aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None, ): return image_transform( image_size=cfg.size, is_train=is_train, mean=cfg.mean, std=cfg.std, interpolation=cfg.interpolation, resize_mode=cfg.resize_mode, fill_color=cfg.fill_color, aug_cfg=aug_cfg, )